PASSAIC ROLLING MILL Co.

PATERSON, N. J.

哪

STRUCTURAL STEEL & IRON.

1900

Edwirantvnikle
To Otis Elwalor Company
7/ B' way . N. J.
7/15/1900

Digitized by the Internet Archive in 2010 with funding from Lyrasis Members and Sloan Foundation

WASHINGTON BRIDGE, OVER HARLEM RIVER, NEW YORK CITY. BUILT BY THE PASSAIC ROLLING MILL CO.

A MANUAL

0155ac

OF

USEFUL INFORMATION AND TABLES
APPERTAINING TO THE USE OF

STRUCTURAL STEEL,

AS MANUFACTURED BY

THE PASSAIC ROLLING MILL CO.,

(NEW YORK OFFICE, 45 BROADWAY.) (BOSTON OFFICE, 31 STATE ST.)

FOR ENGINEERS, ARCHITECTS AND BUILDERS.

 \mathbf{BY}

GEO. H. BLAKELEY, C. E.

M. AM. SOC. C. E.

1900.

Entered according to Act of Congress, in the year 1900, by THE PASSAIC ROLLING MILL CO., in the Office of the Librarian of Congress, at Washington. THE DE VINNE PRESS, NEW-YORK.

MECOET

WATTS COOKE, Pres. W. O. FAYERWEATHER, Vice-Pres. and Treas. J. B. COOKE, Ass't Sec'y. J. K. COOKE, Sup't.

A. C. FAIRCHILD, Sec'y. G. H. BLAKELEY, Chf. Eng

THE

PASSAIC ROLLING MILL CO.,

PATERSON, NEW JERSEY,

MANUFACTURERS OF

OPEN HEARTH STRUCTURAL STEEL AND HIGH GRADE IRON.

BEAMS, CHANNELS, ANGLES, TEES, Z BARS, PLATES MERCHANT BARS.

DESIGNERS, MANUFACTURERS AND CONTRACTORS FOR ALL KINDS OF STEEL AND IRON WORK FOR

BRIDGES AND BUILDINGS.

ROOFS, POWER STA-TIONS, TRAIN SHEDS, RAILWAY AND HIGHWAY BRIDGES AND VIADUCTS, STANDARD RAILWAY TURNTABLES, EYE BARS. BUCKLE PLATES, SLEEVE NUTS, RIVETS, AND STRUCTURAL STEEL WORK OF ALL DESCRIPTIONS.

PLANS AND SPECIFICATIONS FURNISHED ON APPLICATION.

NEW YORK OFFICE, 45 BROADWAY. BOSTON OFFICE, 31 STATE ST.

PREFACE.

This manual is a new work throughout. It is intended to supply such special information and tables as, it was thought, would prove of value and service to those who are engaged in the design of structural steel work in general, and the patrons of the publishers, The Passaic Rolling Mill Co., in particular.

The tables, with a few exceptions, were computed expressly for this work, and many of them are original in both matter and form.

The author hopes that they will be found to possess the qualities of accuracy and reliability.

Such of the tables as were not calculated for this work were obtained from works of presumably independent origin, which were compared for the detection of errors.

The tables of the weights and ultimate strengths of materials have been compiled by comparison of all the available data on the subject.

No attempt has been made to encumber the work with abridgments of mathematical tables, as such tables, to be of value, must be very extended and complete. Only such matter is given as the author has found to be of service in his own practice.

TABLE OF CONTENTS.

SHAPES MANUFACTURED BY PASSAIC ROLLING	Pag	Page.	
MILL CO	6 -	37	
CONSTRUCTIONAL DETAILS	38 -	52	
PROPERTIES OF PASSAIC STRUCTURAL SHAPES	53 -		
TRANSVERSE STRENGTH OF PASSAIC STRUCTURAL	00	• •	
Shapes	72 -	93	
BEAM GIRDERS	94 -	99	
STRENGTH AND DEFLECTION OF BEAMS	100 -	111	
MOMENTS OF INERTIA OF USUAL SECTIONS	112 -	113	
FIREPROOF CONSTRUCTION	114 -	118	
Building Laws		119	
Spacing of I Beams for Floors	120 -	133	
RIVETED GIRDERS	134 -	143	
SUDDENLY APPLIED LOADS		144	
LINTELS	145 -	147	
COLUMNS, PROPERTIES AND SAFE LOADS	148 - 3	206	
Foundations	207 - 3	213	
WIND BRACING	214 - 3	215	
Wooden Beams	216 - 3	220	
Wooden Columns	221 - 3	222	
Roofs	223 - 9		
Bridge Trusses	231 - 2	243	
	244 - 5	-	
SPECIFICATIONS FOR STRUCTURAL STEEL	246 - 3		
CORRUGATED IRON	249 - 3	250	
RIVETS AND PINS	251 - 9	256	
BOLTS AND NUTS	257 - 9		
BUCKLE PLATES	260 - 5	261	
SLEEVE NUTS	5	262	
Loop Rods		263	
EYE BARS AND PINS	264 - 5		
CLEVISES	5	266	
LINEAR EXPANSION BY HEAT		267	
AREAS AND WEIGHTS OF BARS, FLATS AND PLATES			
MISCELLANEOUS TABLES	282 - 5	294	
ULTIMATE STRENGTHS OF MATERIALS			
WEIGHTS OF VARIOUS SUBSTANCES	299 - 3	304	
MENSURATION; AREAS AND CIRCUMFERENCES OF	005	200	
CIRCLES	305 - 3		
WEIGHTS AND MEASURES	310 - 3	317	

EXPLANATORY NOTES.

All weights given are for steel, and are per lineal foot of the section.

The manner in which the weights of various sections are increased is illustrated on page 34.

For channels and **I** beams, the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. Lithograph sections are given for the principal weights of beams and channels. The dimensions of other weights of beams and channels can be obtained from the tables of weights and dimensions of **I** beams and channels, pages 35 and 36.

The effect of spreading the rolls, to increase the thickness of angles, slightly increases the length of the legs. Where the thickness is rolled in finishing grooves, the exact length of the legs is maintained. The finishing grooves for angles are given in the table on page 37. Intermediate and thicker sections have slightly increased length of legs.

Z bars are increased in thickness in the same manner as angles. The dimensions of the various thicknesses of **Z** bars are given in the tables of the weights and properties of **Z** bars.

T shapes do not admit of any variation, and can only be rolled to the weights given.

Beams, Channels, and **Z** bars are rolled only of steel. Universal Mill Plates and Angles are rolled of steel, but can be rolled of iron by special arrangement. **T** shapes can be rolled of steel or iron. Merchant Bars can be rolled either of steel or iron.

In ordering sections, the weight or thickness wanted must be designated, but not both.

Unless stated to the contrary, all tables are for steel sections, as steel is now almost exclusively used for all structural purposes.

Unless otherwise arranged, all structural material will be cut to lengths with an extreme variation not exceeding 34 of an inch.

SHAPES

MANUFACTURED BY

THE PASSAIC ROLLING MILL CO.,
PATERSON, NEW JERSEY.

STEEL BEAMS

75 LBS. PR. FT.

11

STEEL BEAMS

For Additional Weights See Page 35.

STEEL BEAMS

STEEL CHANNELS

33 TO 50 LBS. PR. FT

For Intermediate Weights See Page 36.

STEEL CHANNELS

16 TO 21 LBS. PR. FT. 13 TO 15 LBS. PR. FT.

For Intermediate Weights See Page 36. 13 TO 17 LBS. PR. FT. 10 TO 12 LBS. PR. FT.

20

STEEL CHANNELS

9 TO 12 LBS. PR. FT.

6 TO 8 LBS. PR. FT.

8 TO 10 LBS. PR. FT.

5 TO 7 LBS. PR. FT.

For Intermediate Weights See Page 36.

EQUAL TEES

STEEL OR IRON

UNEQUAL TEES STEEL OR IRON

UNEQUAL TEES STEEL OR IRON

UNEQUAL TEES STEEL OR IRON

3.1 LBS. PR. FT.

UNEQUAL ANGLES STEEL OR IRON 6"x 4"x 3" TO 7" 12.3 TO 28.4 LBS. PR. FT. $5"x 3\frac{1}{2}"x \frac{3}{8}"T0 \frac{3}{4}" 10.4 TO 20.3 LBS. PR. FT.$ 5"x 3"x 15" TO 3" 8.16 TO 19.3 LBS. PR. FT. $4\frac{1}{2}$ "x 3"x $\frac{5}{16}$ "TO $\frac{3}{4}$ " 7.65 TO 17.8 LBS. PR. FT. Intermediate "x 31" x 5" To 3" 7.65 To 17.8 LBS. PR. FT Thicknesses Vary by $\frac{1}{16}$ " $2\frac{1}{2}$ "x 2"x $\frac{3}{16}$ " TO $\frac{1}{2}$ " 4"x 3"x 5" TO 5" 7.11 TO 13.5 LBS. PR. FT. 2.75 то 7.45 LBS. PR. FT. 31 "x 3"x 15" TO 5" 6.56 TO 12.5 LBS. PR. FT. 31"x 21"x 14" TO 9" 4.9 TO 10.6 LBS. PR. FT. $3"x 2_2^{1"}x \frac{1}{4}"$ TO $\frac{9}{16}"$ 4.45 TO 9.69 LBS, PR. FT. 3"x 2"x 1"To 1" 4.05 TO 7.65 LBS PR. FT. 2¼"x 1½" x ¾" T0 ½" 2.28 TO 3.64 LBS. PR. FT. SQUARE ROOT **ANGLES** 2"x 14"x 3"T0 5" 2.28 TO 3.64 LBS. PR. FT. 116 x 11 x 18 0.7 LBS. PR. FT. 18"x 18" x 8" 10 5" 1.02 to 2 45 LBS. PA FT 7"x 1"x 1" 0.53 LBS. PR. FT.

MISCELLANEOUS SHAPES IRON ONLY BEAD IRON. 31/2" × 3/16" 2.5 LBS.PR.FT. 4× 1/4" 3.7 LBS.PR.FT. 41/2× 5/16" 5.2 LBS.PR.FT. 5x3/8" 7.0 LBS.PR.FT. GROOVES. HAND RAIL. 1/2"×3/4×1/4" 1/2×1/4×14 21/4×1/4×1/4 ROUND EDGE FLATS. 21/2×3/4 To 4×1"

HEXAGON.

HALF ROUND.

PICTURE FRAME.

SIZES OF PASSAIC BARS,

STEEL OR IRON,

IN INCHES.

ROUNDS.

 $\begin{array}{c} \frac{3}{8},\,\frac{7}{16},\,\frac{1}{2},\,\frac{9}{16},\,\frac{5}{8},\,\frac{11}{16},\,\frac{3}{4},\,\frac{13}{16},\,\frac{7}{8},\,\frac{15}{16},\,1,\,1_{16}^{1},\,1_{8}^{1},\\ 1_{16}^{3},\,1_{4}^{1},\,1_{16}^{5},\,1_{8}^{3},\,1_{2}^{1},\,1_{8}^{5},\,1_{4}^{3},\,1_{7}^{7},\,2,\,2_{8}^{1},\\ 2_{4}^{1},\,2_{8}^{3},\,2_{2}^{1},\,2_{8}^{5},\,2_{4}^{3},\,2_{7}^{7},\,3,\,3_{8}^{1},\,3_{4}^{1},\\ 3_{8}^{3},\,3_{2}^{1},\,3_{8}^{5},\,3_{4}^{3},\,3_{8}^{7},\,4,\\ 4_{4}^{1},\,4_{2}^{1},\,4_{3}^{3},\,5. \end{array}$

SQUARES.

 $\begin{array}{c} \frac{3}{8},\,\frac{7}{16},\,\frac{1}{2},\,\frac{9}{16},\,\frac{5}{8},\,\frac{11}{16},\,\frac{3}{4},\,\frac{7}{8},\,\frac{15}{16},\,1,\,1\frac{1}{8},\,1\frac{1}{4},\,1\frac{3}{8},\,1\frac{1}{2},\\ 1\frac{5}{8},\,1\frac{3}{4},\,1\frac{7}{8},\,2,\,2\frac{1}{4},\,2\frac{1}{2},\,2\frac{3}{4},\,3,\,3\frac{1}{4},\,3\frac{1}{2},\,4. \end{array}$

HALF-ROUNDS.

 $\begin{array}{c} \frac{3}{8},\ \frac{7}{16},\ \frac{1}{2},\ \frac{9}{16},\ \frac{5}{8},\ \frac{11}{16},\ \frac{3}{4},\ \frac{13}{16},\ \frac{7}{8},\ \frac{15}{16},\ 1,\ 1\frac{1}{8},\\ 1\frac{1}{4},\ 1\frac{3}{8},\ 1\frac{1}{2},\ 1\frac{5}{8},\ 1\frac{3}{4},\ 2,\ 2\frac{1}{2},\ 3,\ 3\frac{1}{2}. \end{array}$

HEXAGONS.

 $\frac{7}{16}$, $\frac{1}{2}$, $\frac{5}{8}$, $\frac{11}{16}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{1}{16}$, $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{4}$.

ROUND EDGE FLATS.

 $2\frac{1}{2} \times \frac{3}{4}$, $2\frac{1}{2} \times \frac{7}{8}$, $2\frac{3}{4} \times \frac{3}{4}$, $2\frac{3}{4} \times \frac{7}{8}$, $3 \times \frac{7}{8}$, $4 \times \frac{7}{8}$, 4×1 .

FLATS.

Width.	Thickness.		Width.	Thick	cness.	Width.	Thickness.	
Width.	Min.	Max.	Width.	Min.	Max.	Width.	Min.	Max.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/20-1/20-1/20-1/20-1/20-1/20-1/4	1 1 1	$egin{array}{c} 1^{rac{3}{4}} \ 2 \ 2^{rac{1}{4}} \ 2^{rac{1}{2}} \ 2^{rac{3}{4}} \ 3 \ 3^{rac{1}{4}} \ 3^{rac{1}{2}} \ \end{array}$	3,6 1,4 1,4 1,4 1,4 1,4 1,4 1,4	$egin{array}{c} 1^{rac{5}{12}} & 1^{rac{7}{18}} & 2 & 2^{rac{1}{4}} & 2^{rac{3}{4}} & 2^{rac{5}{18}} & 2^{rac{5}{18}} & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	3 ³ / ₄ 4 4 ¹ / ₄ 4 ¹ / ₂ 5 6 7	100 14 14 14 14 10 1 1 1 4 1 4 1 4 1 4 1	3334334442 22 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

PASSAIC UNIVERSAL MILL PLATES.

STEEL.

Universal mill plates can be rolled to any width between 6" and 24", varying in width by $\frac{1}{4}$ ", and to any specified thickness from $\frac{1}{4}$ " upward, varying by $\frac{1}{16}$ ", and to a maximum limit of length of 70 ft., provided the total weight of the plate does not exceed 3,000 lbs.

EXTREME LENGTHS OF UNIVERSAL PLATES, IN FEET.

Width of			THIC	KNESS,	IN INC	CHES.		
Plate, inches.	1/4	5 16	38	$\frac{1}{2}$	<u>5</u> 8	3/4	7 8	1
6	40	45	60	70	70	70	70	70
7	//	//	//	"	"	//	//	"
8	"	//	"	"	//	//	//	"
9	"	//	//	11	"	//	//	//
10	//	//	//	//	//	//	"	//
11	//	"	"	"	//	//	//	//
12	//	//	//	"	//	"	"	//
13	//	//	"	"	//	//	//	68
14	"	"	"	"	"	//	//	63
15	//	"	//	"	"	//	67	59
16	//	"	//	"	"	"	63	55
17	"	//	//	"	"	69	59	52
18	"	"	//	"	"	64	56	48
19	//	"	//	"	"	62	53	46
20	"	"	//	"	"	59	5 0	44
21	"	"	"	"	67	56	48	42
22	"	"	//	//	64	52	45	40
23	"	"	"	"	60	50	44	38
24	"	"	"	"	58	48	42	36

METHOD OF INCREASING SECTIONAL AREAS

MINIMUM, MAXIMUM AND INTERMEDIATE WEIGHTS AND DIMENSIONS OF PASSAIC

STEEL I BEAMS.

Depth of Beam, in inches.		ht per in lbs.	Width of Flanges, in inches.			kness Veb, ches.	Increase of Web and Flanges for each lb. increase of weight.	Intermediate Weights, lbs.
Depth in	Min.	Max.	Min.	Max.	Min.	Max.	Increa and F each II	per toot.
20 20 20	90 80 65	85 75	$6.75 \\ 6.38 \\ 6.00$	6.46 6.16	$0.78 \\ 0.69 \\ 0.50$	0.77 0.66	.015 .015	70
18 18 18	75 70 55	80 65	6.55 6.37 6.00	6.63 6.17	$0.62 \\ 0.65 \\ 0.47$	0.70	.016 .016 .016	60
15 15 15	60 50 42	80 55 45	$6.00 \\ 5.75 \\ 5.50$	6.39 5.85 5.58	$0.52 \\ 0.45 \\ 0.40$	$0.91 \\ 0.55 \\ 0.48$.020 .020 .020	65, 70 & 75
12 12 12	$55 \ 40 \ 31\frac{1}{2}$	65 50 35	$6.00 \\ 5.50 \\ 5.13$	6.25 5.75 5.21	$0.63 \\ 0.39 \\ 0.35$	$0.88 \\ 0.64 \\ 0.43$.025 .025 .025	60 45
10 10	33 25	40 30	$\frac{5.00}{4.75}$	5.21 4.89	$\begin{bmatrix} 0.37 \\ 0.31 \end{bmatrix}$	$\begin{array}{c} 0.58 \\ 0.45 \end{array}$.029 .029	35 27
9 9	27 21	33 25	$\frac{4.75}{4.50}$	4.95 4.63	$0.31 \\ 0.27$	$\begin{bmatrix} 0.51 \\ 0.40 \end{bmatrix}$.033	$\frac{30}{23\frac{1}{3}}$
8 8	22 18	27 20	4.38 4.13	$\begin{array}{c} 4.56 \\ 4.20 \end{array}$	$\begin{bmatrix} 0.29 \\ 0.25 \end{bmatrix}$	$\begin{bmatrix} 0.48 \\ 0.32 \end{bmatrix}$.037 .037	25
7 7	20 15	$22 \ 17\frac{1}{2}$	$\frac{4.09}{3.88}$	$\frac{4.17}{3.98}$	$\begin{bmatrix} 0.28 \\ 0.23 \end{bmatrix}$	$0.36 \\ 0.34$	$.042 \\ .042$	
6 6	15 12	20 14	$\frac{3.52}{3.38}$	$\frac{3.77}{3.48}$	$\begin{array}{c} 0.25 \\ 0.22 \end{array}$	$\begin{bmatrix} 0.50 \\ 0.32 \end{bmatrix}$.049	$17\frac{1}{2}$ 13
5 5	$\frac{13}{9\frac{3}{4}}$	15 12	$\frac{3.13}{3.00}$	$\frac{3.25}{3.12}$	$0.26 \\ 0.21$	$\begin{bmatrix} 0.38 \\ 0.33 \end{bmatrix}$. 059 . 059	,
4 4	$\begin{array}{c c} 7\frac{1}{2} \\ 6 \end{array}$	10	$2.50 \\ 2.19$	2.69	$0.20 \\ 0.18$	0.39	.074	8 & 9

WEIGHTS IN HEAVY-FACED TYPE ARE CONSTANTLY KEPT IN STOCK. OTHER WEIGHTS ARE ROLLED ONLY ON ORDER.

MINIMUM, MAXIMUM AND INTERMEDIATE WEIGHTS AND DIMENSIONS OF PASSAIC

STEEL CHANNELS.

Depth of Chan- nel, in inches.		ht per in lbs.	Width of Flanges, in inches.		Thickness of Web, in inches.		Increase of Web and Flanges for each lb. increase of weight.	Inter- mediate Weights, Ibs.
Dep nel,	Min.	Max.	Min.	Max.	Min.	Max.	Incre and each	per foot.
15 15	40 33	50 35	3.52 3.38	3.71 3.42	.54 .40	.73 .44	.020	45
12 12	27 20	35 25	3.13 2.88	3.33 3.00	.38	.58 .40	.025 .025	30 & 33 23
10 10	20 15	30 18	2.88 2.60	3.17 2.67	.31	.60	.029	25 17
9 9	16 13	21 15	2.56 2.36	2.73 2.43	.28	.45	.033	18 14
8 8	13 10	17 12	2.22 2.08	2.37 2.15	.25 .20	.40 .27	.037	15 11
7	13 9	17 12	2.22 2.00	2.39 2.13	.28	.45	.042	15 10
6 6 6	17 12 8	20 15 10	2.41 2.19 1.94	2.56 2.34 2.04	.38 .28 .20	.53 .43 .30	.049 .049 .049	18 13 9
5 5	9	12 8	1.91 1.66	2.09 1.78	.25 .18	.43	.059	10 7
4 4	8 5	10 7	1.86 1.59	2.01 1.74	.27	.42	.074	9 6

WEIGHTS IN HEAVY-FACED TYPE ARE CONSTANTLY KEPT
IN STOCK. OTHER WEIGHTS ARE ROLLED
ONLY ON ORDER.

SIZES OF FINISHING GROOVES FOR PASSAIC STEEL ANGLES.

ALL DIMENSIONS ARE GIVEN IN INCHES.

E	QUAL LEGS.	UNE	QUAL LEGS.
Size.	Thickness.	Size.	Thickness.
6 × 6	$\frac{3}{8}$ and $\frac{11}{16}$	6 × 4	3/8 and 5/8
5 × 5	3/8 and 5/8	$5 \times 3\frac{1}{2}$	$\frac{3}{8}$ and $\frac{5}{8}$
4×4	$\frac{5}{16}$, $\frac{7}{16}$ and $\frac{5}{8}$	5 × 3	$\frac{5}{16}$, $\frac{7}{16}$ and $\frac{9}{16}$
$3\frac{1}{2}\times3\frac{1}{2}$	$\frac{5}{16}$, $\frac{7}{16}$, $\frac{1}{2}$ and $\frac{5}{8}$	$4\frac{1}{2} \times 3$	$\frac{5}{16}$, $\frac{7}{16}$ and $\frac{5}{8}$
3×3	$\frac{1}{4}$, $\frac{5}{16}$ and $\frac{7}{16}$	$4 \times 3\frac{1}{2}$	$\frac{5}{16}$, $\frac{7}{16}$ and $\frac{5}{8}$
$2rac{1}{2} imes2rac{1}{2}$	$\frac{1}{4}$, $\frac{5}{16}$ and $\frac{7}{16}$	4 × 3	$\frac{5}{16}$, $\frac{7}{16}$ and $\frac{5}{8}$
$2\frac{1}{4} \times 2\frac{1}{4}$	$\frac{3}{16}$, $\frac{1}{4}$ and $\frac{3}{8}$	$3\frac{1}{2} \times 3$	$\frac{5}{16}$, $\frac{3}{8}$, $\frac{1}{2}$ and $\frac{5}{8}$
2×2	$\frac{3}{16}$, $\frac{1}{4}$ and $\frac{3}{8}$	$3\frac{1}{2} \times 2\frac{1}{2}$	$\frac{1}{4}$, $\frac{3}{8}$ and $\frac{1}{2}$
$1\frac{3}{4} imes 1\frac{3}{4}$	$\frac{3}{16}$, $\frac{1}{4}$ and $\frac{3}{8}$	$3 \times 2\frac{1}{2}$	$\frac{1}{4}$, $\frac{3}{8}$ and $\frac{1}{2}$
$1^{1\over 2} imes1^{1\over 2}$	$\frac{3}{16}$, $\frac{1}{4}$ and $\frac{3}{8}$	3 × 2	$\frac{1}{4}$, $\frac{3}{8}$ and $\frac{1}{2}$
$1\frac{1}{4} \times 1\frac{1}{4}$	$\frac{1}{8}$ and $\frac{3}{16}$	$2\frac{1}{2} \times 2$	$\frac{3}{16}$ and $\frac{5}{16}$
1 × 1	$\frac{1}{8}$ and $\frac{3}{16}$	$2^{rac{1}{4}} imes1^{rac{1}{2}}$	$\frac{3}{16}$ and $\frac{5}{16}$
$\frac{7}{8} \times \frac{7}{8}$	$\frac{1}{8}$ and $\frac{3}{16}$	$2 \times 1\frac{3}{4}$	$\frac{3}{16}$ and $\frac{5}{16}$
$\frac{3}{4} \times \frac{3}{4}$	$\frac{1}{8}$ and $\frac{3}{16}$	$1\frac{3}{8}\times1\frac{1}{8}$	$\frac{1}{8}$ and $\frac{1}{4}$

When the angle is obtained from a finishing groove, the exact lengths of the legs are preserved; but for intermediate and greater thicknesses, the lengths of the legs are slightly increased. This increase of length amounts to about $\frac{1}{16}$ of an inch for each $\frac{1}{16}$ inch increase in thickness.

BEAM PROTECTION.

GIRDER PROTECTION.

HOLLOW BRICK FLAT ARCH.

HOLLOW BRICK SEGMENTAL ARCH.

COLUMN PROTECTION.

TILE ROOF CONSTRUCTION.

TILE CEILING CONSTRUCTION.

"EXCELSIOR" END CONSTRUCTION FLAT ARCH.

BUILT COLUMN SECTIONS

SEPARATORS AND BOLTS FOR

STEEL BEAMS.

SPACING OF BOLTS, A=10" for 18" and 20" Beams.

- $= 7^{\prime\prime}$ for 15 $^{\prime\prime}$ Beams.
- $= 6^{\prime\prime}$ for $12^{\prime\prime}$ Beams.

E	ignation of Seam.	Widths, in with fl	anges	Weigh with fla	hts, in po inges ¼'	ounds, ' apart.	Increase in weight of separator and bolt for one inch increas in width of girder.	Number of bolts in separator.
Depth in inches.	Weight in lbs. per foot.	Width of Girder,	Width of Sepa- rator, S	Weight of Separator	Weight of Bolts.	Separator and Bolts.	Increase of separate for one in in width	Numbe in sep
20 20 20 20 18 18 18 15 15 15 15 12 12 12	90 80 75 65 80 70 65 55 75 65 60 42 50 40 31½	$\begin{array}{c} 13\frac{3}{4} \\ 13 \\ 12\frac{5}{5} \\ 12\frac{1}{4} \\ 13\frac{1}{2} \\ 13 \\ 12\frac{5}{5} \\ 12\frac{1}{4} \\ 12\frac{1}{5} \\ 12\frac{1}{4} \\ 11\frac{3}{4} \\ 11\frac{1}{4} \\ 10\frac{1}{2} \\ \end{array}$	66556655555555555555555555555555555555	$\begin{array}{c} 22^{\frac{1}{4}} \\ 21^{\frac{1}{4}} \\ 20^{\frac{1}{2}} \\ 20 \\ 20 \\ 19^{\frac{1}{4}} \\ 18^{\frac{1}{2}} \\ 12^{\frac{1}{4}} \\ 11^{\frac{1}{2}} \\ 9^{\frac{1}{4}} \\ 8^{\frac{3}{4}} \\ \end{array}$	4.2 4 4 34 4 4 3 4 4 4 3 3 3 3 3 3 3 3 3 3	$26^{\frac{9}{4}}$ $25^{\frac{1}{4}}$ $24^{\frac{1}{4}}$ $24^{\frac{1}{4}}$ $24^{\frac{1}{4}}$ $22^{\frac{1}{4}}$ $16^{\frac{1}{4}}$ 15 13 $12^{\frac{1}{4}}$	3.7 3.7 3.7 3.3 3.3 3.3 3.3 2.4 2.4 2.4 2.4 2.0 2.0 2.0	Two 3/4 diameter bolts.
10 10 10 10 9 9 8 8 7 7 6 6 5 5 4 4	40 33 30 25 27 23 ¹ / ₃ 21 22 18 20 15 15 12 13 9 ² / ₄ 8 6	$\begin{array}{c} 10^{\frac{5}{5}} \\ 10^{\frac{3}{4}} \\ 10^{\frac{3}{4}} \\ 9^{\frac{3}{4}} \\ 9^{\frac{1}{2}} \\ 9^{\frac{1}{4}} \\ 9^{\frac{1}{4}} \\ 8^{\frac{1}{2}} \\ 8^{\frac{1}{4}} \\ 7^{\frac{1}{4}} \\ 6^{\frac{1}{4}} \\ 4^{\frac{1}{4}} \\ 6^{\frac{1}{4}} \\ 4^{\frac{1}{4}} \\ 6^{\frac{1}{4}} \\ 4^{\frac{1}{4}} \\ 6^{\frac{1}{4}} \\ 4^{\frac{1}{4}} \\ 6^{\frac{1}{4}} \\ 6^{1$	4 4 4 4 4 5 3 3 3 3 2 2	7 7 6 6 5 5 5 5 4 4 4 3 3 2 1 1 2 1 4 1 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5	지수의 수의 수	888877777666554433332	1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.1 1.0 0.9 0.7 0.7	One 3// diameter bolt.

STANDARD CONNECTION ANGLES.

The standard connection angles, for the principal sizes and weights of Passaic steel I beams, are illustrated on the following pages. These connections are designed on the basis of an allowable shearing strain of 9,000 lbs. per square inch, and a bearing strain of 18,000 lbs. per square inch on bolts. The number of bolts is dependent, in most instances, upon their bearing values on the webs of the beams.

The connections are proportioned to cover most cases occurring in ordinary practice. Where beams have short spans and are loaded to their full capacity, it may be found necessary to use connections having a greater number of bolts than is used in the standard connections. The minimum spans for which the standard connection angles may be used are given in the following table; and the approximate weights of the standard connections are also given.

Connection angles may be riveted to the beams, instead of being bolted, if so specified; but, unless ordered to the con-

trary, bolted connections are generally used.

MINIMUM SPANS

FOR WHICH STANDARD CONNECTIONS CAN BE USED.

Depth of Beam, Inches.	Weight of Beam, Lbs. per Foot.	Minimum Safe Span, in Feet.	Weight of one Connec- tion, Lbs.	Depth of Beam, Inches.	Weight of Beam, Lbs. per Foot.	Minimum Safe Span, in Feet.	Weight of one Connec- tion, Lbs.
20	90	20.5	35	10	40	12.0	$18\frac{1}{2}$
11	80	18.0	//	//	33	11.5	//
//	75	16.5	//	//	30	9.0	11
//	65	18.0	//	//	25	10.5	//
				9	27	10.5	17
18	80	16.9	34	,,	$23\frac{1}{3}$	7.5	"
//	70	14.5	//		21^{203}	9.0	"
//	65	13.2	//	"	21	9.0	"
11	55	15.0	//	8	27	6.0	16
15	75	16.0	28	//	22	9.0	//
"	65	15.0	"	//	18	7.5	//
	60	16.0		7	20	7.0	15
//		1	"	//	15	6.5	//
//	50	15.5	//				
//	42	14.0	//	6	15	7.0	9
12	65	14.7	26	6	12	6.5	17
				5	13	5.0	11
//	55	13.5	"	"	$9\frac{3}{4}$	4.5	11
//	40	12.0	"	4	$7\frac{1}{2}$	2.5	8
//	$31\frac{1}{2}$	10.5	//	"	6^{2}	$\widetilde{2.5}$,,
	1					~.0	

Weights of Connections do not include bolts for field use.

STANDARD BEAM CONNECTIONS

All holes for 3" bolts or rivets.

STANDARD BEAM CONNECTIONS.

All holes for 3" bolts or rivets.

2 Angles 6"x 4"x $\frac{3}{8}$ "x $2\frac{1}{2}$ "

STANDARD SPACING AND DIMENSIONS OF RIVET AND BOLT HOLES THROUGH FLANGES AND CONNECTION ANGLES OF **I** BEAMS.

1									
Depth in inches.	Weight per ft., lbs.	Dia. of Bolt or Rivet, in inches.	a, in ins.	b, in ins.	Depth in inches.	Weight per ft., lbs.	Dia. of Bolt or Rivet, in ins.	a, in ins.	b, in ins.
20 20 20 20 20 20 20 20	90 85 80 75 70 65	3 4 // // // //	$\begin{array}{c} 4 \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	$5\frac{3}{4}$ $5\frac{3}{4}$ $5\frac{1}{16}$ $5\frac{1}{16}$ $5\frac{1}{2}$ $5\frac{1}{2}$	10 10 10 10 9 9	33 30 27 25 33 30	3 4 // // //	$\begin{array}{c} 2\frac{3}{4} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \\ 2\frac{3}{4} \end{array}$	538 516 538 516 516 512 5176
18 18 18 18	80 75 70 65	// // //	$\begin{array}{c} 4 \\ 4 \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array}$	$\begin{array}{c} 5\frac{1}{16} \\ 5\frac{5}{8} \\ 5\frac{1}{16} \\ 5\frac{5}{8} \\ 5\frac{1}{16} \\ 5\frac{7}{16} \\ 5\frac{7}{16} \\ \end{array}$	9 9 9 9	$ \begin{array}{c c} 27 \\ 25 \\ 23\frac{1}{3} \\ 21 \end{array} $	// // //	234 234 212 212 212 212 212 212	55555555555555555555555555555555555555
18 18 15 15 15	60 55 75 70 65	// // // //	$\begin{array}{c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ \hline 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ \end{array}$	$\begin{array}{c c} 5_{16}^{16} \\ 5_{16}^{7} \\ \hline 5_{16}^{13} \\ 5_{34}^{4} \\ 5_{2}^{5} \\ 5_{2}^{1} \end{array}$	8 8 8 8	27 25 22 20 18	// // // //	$\begin{array}{ c c c }\hline 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ \end{array}$	$5\frac{1}{2}$ $5\frac{3}{8}$ $5\frac{5}{16}$ $5\frac{5}{16}$ $5\frac{1}{14}$
15 15 15 15 15	55 50 45 42	" " "	$\begin{array}{c c} 3\frac{1}{2} \\ \hline 3\frac{1}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \\ \end{array}$	$\begin{array}{ c c c }\hline 5\frac{1}{2} \\ \hline 5\frac{9}{16} \\ 5\frac{7}{16} \\ 5\frac{7}{16} \\ 5\frac{3}{8} \\ \hline \end{array}$	7 7 7 7	$ \begin{array}{c c} 22 \\ 20 \\ 17\frac{1}{2} \\ 15 \end{array} $	5 8 "	$ \begin{array}{c c} 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2 \\ 2 \end{array} $	$ \begin{array}{r} 5\frac{3}{8} \\ 5\frac{1}{4} \\ 5\frac{1}{16} \\ 5\frac{1}{4} \end{array} $
12 12 12 12	65 60 55		$\begin{array}{c c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{4} \end{array}$	$\begin{array}{ c c c }\hline 5^{7}_{8} \\ 5^{3}_{4} \\ 5^{5}_{8} \\ \end{array}$	6 6 6	$ \begin{array}{c c} 20 \\ 17\frac{1}{2} \\ 15 \\ 12 \\ \hline 15 \\ \end{array} $	" "	$\begin{bmatrix} 2 \\ 2 \\ 2 \\ 1\frac{3}{4} \end{bmatrix}$	$ \begin{array}{r} 5\frac{1}{2} \\ 5\frac{3}{8} \\ 5\frac{1}{4} \\ 5\frac{1}{4} \end{array} $
12 12 12 12 12	50 45 40 35 31½		$ \begin{array}{c} 3\frac{1}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \\ 3 \end{array} $	550 510 520 57 57 57 57 57 57 57	5 5 5 5 4	15 13 12 9 ³ / ₄	1 11 11 11	134 134 134 112 112	$\begin{array}{r} 5\frac{3}{8} \\ 5\frac{1}{4} \\ 5\frac{5}{4} \\ 5\frac{1}{4} \\ 5\frac{3}{8} \end{array}$
10 10	40 35	"	$egin{array}{c} 2rac{3}{4} \ 2rac{3}{4} \ \end{array}$	$\begin{array}{ c c c }\hline 5_{16}^{\ 9} \\ 5_{16}^{\ 7} \\ \end{array}$	4 4	$\begin{array}{ c c }\hline 7\frac{1}{2} \\ 6 \\ \hline \end{array}$	" "	$\begin{array}{ c c c }\hline 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{8} \\ \end{array}$	$\begin{array}{c c} 5\frac{3}{8} \\ 5\frac{3}{16} \\ 5\frac{3}{16} \\ \end{array}$

STANDARD SPACING AND DIMENSIONS OF RIVET AND BOLT HOLES THROUGH FLANGES AND CONNECTION ANGLES OF CHANNELS.

1									
Depth in inches	Weight per ft., lbs.	Dia. of Bolt or Rivet, in inches.	a, in ins.	b, in ins.	Depth in inches	Weight per ft., lbs.	Dia. of Bolt or Rivet, in ins.	a, in ins.	b, in ins.
15	50	34	$2\frac{1}{2}$	$5\frac{3}{4}$	8	13	3	11/4	$5\frac{1}{4}$
15	45	"	$2\frac{1}{4}$	$5\frac{5}{8}$	8	12	//	$1\frac{1}{8}$	$5\frac{1}{4}$
15	40	//	$2\frac{1}{4}$	5_{16}^{9}	8	10	//	$1\frac{1}{8}$	$5\frac{1}{4}$ $5\frac{3}{16}$
15	35	//	$2\frac{1}{2}$ $2\frac{1}{4}$ $2\frac{1}{4}$ $2\frac{1}{8}$ $2\frac{1}{8}$	$ \begin{array}{c c} 5^{\frac{3}{4}} \\ 5^{\frac{5}{8}} \\ 5^{\frac{1}{16}} \\ 5^{\frac{2}{8}} \end{array} $	7	17	<u>5</u> 8		
15	33	//	$2\frac{1}{8}$	$ 5\frac{3}{8} $	7	13	8	11	516
12	35	//	$2\frac{1}{8}$	$\frac{5_{16}^{9}}{}$	7	12	"	138 144 144 18 18	$5^{7_{16}}_{14}$ $5^{1_{4}}_{16}$ $5^{1_{4}}_{16}$
12	33	//	2	$5\frac{1}{9}$	7	10	//	1 .	$ 5^{\frac{1}{4}^{\circ}} $
12 12	30	"	2	$\begin{array}{c} 5_{16}^{9} \\ 5_{16}^{1} \\ 5_{12}^{7} \\ 5_{38}^{8} \\ 5_{4}^{38} \\ \end{array}$	7	9	//	$1\frac{1}{8}$	$5\frac{3}{16}$
12 12 12	27	//	$1\frac{7}{8}$	$5\frac{3}{8}$	6	20			
12	25	//	$1\frac{3}{4}$	$ 5\frac{3}{8} $	6	17	"	13	53
12	20	//	$1\frac{7}{8}$ $1\frac{3}{4}$ $1\frac{5}{8}$	$ 5\frac{1}{4} $	$\ddot{6}$	15	"	14	5.7
10	30	"	2	$\begin{array}{c} 5\frac{5}{8} \\ 5\frac{7}{16} \\ 5\frac{5}{16} \\ 5\frac{5}{16} \end{array}$	6	12	"	$egin{array}{c} 1 rac{1}{2} \\ 1 rac{3}{8} \\ 1 rac{1}{4} \\ 1 rac{1}{8} \\ \end{array}$	5.33×7.6 5.14.563.6 5.15.15.6 5.15.6
10	25	"	$1\frac{7}{8}$	57	6	10	//	1°_{16}	$5^{\frac{5}{16}}$
10	20	//	$1\frac{7}{8}$ $1\frac{3}{4}$ $1\frac{1}{2}$ $1\frac{1}{2}$	$ \begin{array}{c} 5_{16}^{5} \\ 5_{16}^{5} \\ 5_{4}^{1} \end{array} $	6	8	"	1	5_{16}^{13}
10	18	"	$1\frac{1}{2}$	5_{16}^{5}	5	12	1/2	1.3	57
10	15	//	$1\frac{1}{2}$	54	5	9	2 //	$\frac{1_{16}^{3}}{1}$	$5\frac{1}{5}$
9	21		11/2	57	5 5 5 5	9 8 6	"	15	55
9	16	//	$1 frac{ ilde{3}}{8}$	$ 5^{\frac{1}{4}^{\circ}} $	5	6	//	15 16 7 8	$5^{\frac{7}{16}}$ $5^{\frac{5}{16}}$ $5^{\frac{5}{16}}$ $5^{\frac{3}{16}}$
9 9 9	15	"	$1\frac{1}{2}$ $1\frac{3}{8}$ $1\frac{1}{4}$ $1\frac{1}{4}$	$ \begin{array}{r} 5_{16}^{7} \\ 5_{16}^{1} \\ 5_{16}^{5} \end{array} $	4	10		$\frac{3}{1\frac{1}{8}}$	5.7
9	13	//	$1\frac{1}{4}$	$5\frac{1}{4}$	4	8	"	18	$\frac{516}{5}$
8	17	//	$\overline{1\frac{3}{8}}$	$\frac{5\frac{3}{8}}{}$	$ \hat{4} $	6	"		$5\frac{1}{4}$
8	15	//	$1\frac{1}{4}$	$ \begin{array}{c c} \hline 5\frac{3}{8} \\ 5\frac{5}{16} \end{array} $.4	5	//	7 8 7 8	$5\frac{7}{16}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{3}{16}$
					a				10

ANGLES	c a b
--------	-------

Length of Leg in Inches	Bolt or Rivet, in	c, in ins.	a, in ins.	b, in ins.	Length of Leg, in inches.	Dia. of Bolt or Rivet, in inches.	c, in ins.
$\begin{array}{c} 6 \\ 5 \\ 4\frac{1}{2} \\ 4 \\ 3\frac{1}{2} \\ 3 \end{array}$	7 8 " " " " 3 4	$egin{array}{c} 4rac{1}{2} \ 3rac{1}{2} \ 2rac{1}{2} \ 2 \ 1rac{3}{4} \ \end{array}$	$egin{array}{c} 2^{rac{1}{4}} \ 2 \ 2 \ 1^{rac{3}{4}} \ \end{array}$	$egin{array}{c} 2rac{1}{4} \ 1rac{3}{4} \ 1rac{1}{4} \ 1 \end{array}$	$egin{array}{c} 2rac{1}{2} \ 2rac{1}{4} \ 2 \ 1rac{3}{4} \ 1rac{1}{2} \ 1rac{3}{8} \ \end{array}$	314510 // - 223 0 //	13/8 1 14 18 1 7 8 3 4

STANDARD CONNECTIONS TO CAST IRON COLUMNS.

Dimensions in inches.

Depth of Beam.	А	В	С	D	E	F	G	н	К	Thick- ness of Lugs.	Holes
20 18 15 12	5 4 4 3	$\begin{bmatrix} 5 \\ 5 \\ 3\frac{1}{2} \\ 3 \end{bmatrix}$	$\begin{array}{c} 6 \\ 6 \\ 5\frac{1}{2} \\ 4\frac{1}{2} \end{array}$	$\begin{array}{c} 10\frac{1}{2} \\ 10\frac{1}{2} \\ 9\frac{1}{2} \\ 7\frac{3}{4} \end{array}$	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{4} \\ \end{array}$	$\begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{4} \\ 1\frac{1}{4} \end{array}$	2 2 2 2	$\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$\begin{array}{c} 2 \\ 2 \\ 1\frac{3}{4} \\ 1\frac{1}{2} \end{array}$	1 1 1 1	for 3// bolts.

Depth of Beam.	А	В	С	D	E	F	G	Н	K	Thick- ness of Lugs.	Holes cored
10 9 8	$\frac{3\frac{1}{4}}{3}$ $\frac{2\frac{1}{2}}{2}$	$\frac{3\frac{1}{2}}{3}$	4 4 4	7 7 7	$\begin{array}{c c} \hline 1\frac{1}{4} \\ 1 \\ 1 \end{array}$	1 1 1	$\begin{bmatrix} 2\\2\\2\\2 \end{bmatrix}$	$\begin{array}{c c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 1\frac{1}{2} \end{array}$	$egin{array}{c} 1_{rac{1}{2}}^{rac{1}{2}} \ 1_{rac{1}{2}}^{rac{1}{2}} \ \end{array}$	1 1 3 4	for 3// bolts.
7	$2^{\frac{1}{4}}$	$2\frac{1}{2}$	4	7	1	1	$\frac{\tilde{2}}{2}$	13	11	3	

Note.— If the shelf on which the beam rests is cast square to the column, then when the beam deflects the load would be brought on the extreme outer edge of the bracket. To avoid this, the shelf should be sloped downward, away from the column, with a bevel of 1/8" per foot.

BEARING PLATES.

Steel bearing plates are used to distribute the pressure under the ends of steel beams resting on walls, and must be of a sufficient size so that the pressure per square inch on the wall shall not exceed

On best brickwork, in cement mortar.......200 lbs. On good brickwork, in cement and lime mortar...150 " On common brickwork, in lime mortar 100

For good brickwork laid in cement and lime mortar, capable of sustaining a load of 150 lbs. per square inch, the following sizes of bearing plates will, in general, suffice for ordinary spans:

	Bearing	В	Safe End			
Size of Beam.	on Wall.	Length.	Width.	Thickness.	Reaction in Tons.	
20" and 18" 15" 12" 10" and 9" 8" and 7" 6"	16" 12" 12" 10" 8" 6"	16" 12" 12" 10" 8" 6"	16" 14" 12" 10" 8" 8"	7/8" 3/4" 5/8" 1/2" 1/2" 1/2" 1/2"	19.2 12.6 10.8 7.5 4.8 3.6	

For special cases the size of the bearing plate must be determined and then its thickness obtained by the following formula, in which

t = thickness of plate, in inches.

w = width of plate perpendicular to axis of beam, in inches.

b = width of flange of beam, in inches.

p = allowable pressure, lbs. per square inch on wall. s = allowable fiber strain in plate, lbs. per sq. in.

$$t = \frac{1}{2} (w-b) \sqrt{\frac{3 p}{s}}$$

For an allowable strain of 16,000 lbs. per sq. in., the thickness of the plate required can be obtained for various pressures by multiplying ½ (w-b), or the cantilever projection of the plate, by the following coefficients:

Pressure, lbs. per sq. in. 100 150 200250

A template of bluestone, or other hard quality of stone, is frequently necessary, instead of a steel bearing plate, at the wall ends of steel beams. Where the pressure is great, as at the ends of girders, both steel bearing plates and stone templates should be used, the size of the bearing plate being sufficient to limit the pressure between it and the bluestone template to 300 lbs. per square inch. The size of the stone template must be sufficient to limit its pressure on the brickwork to the proper pressure as given above. The stone template should not project beyond the bearing plate, in any direction, more than 34 of the thickness of the stone.

TIE RODS.

Tie rods are generally 34" diameter and should be placed 3" above the bottom of the beams in order to be as near as possible to the line of thrust of the arch. The proper spacing is determined by two considerations; the net area of the rod, at 15,000 lbs. per square inch, must be adequate to resist the thrust of the arches, and also the lateral strains produced in the beams or channels by the thrust of the arches must not be excessive.

Let, t = thrust of arch, per lineal foot, in lbs. r = effective rise of arch, in inches. (For flat arches r is 2" less than the thickness of arch).

l = span of arch, in feet.

w = load per square foot, in lbs. a = net area of tie rod. (For $\frac{3}{4}$ " rod, a = 0.3; $\frac{7}{8}$ " rod, a = 0.42; and a = 0.55).

d =distance between tie rods, in feet.

Then,
$$t = \frac{3 w l^2}{2 r}$$
; (1) and, $d = \frac{10,000 a r}{w l^2}$; (2)
For $3''$ tie rods when $w = 150$ lbs., $d = 20 r \div l^2$.

In general it will be found necessary to decrease this distance between tie rods, found by the above formula, in order that the lateral strains produced by the thrust of the arches on the beams or channels may not be excessive.

Let, I' = moment of inertia of beam or channel, axis coincident with or parallel to web.

f =width of flange, in inches.

g = distance of center of gravity from back of channel, inches.

S = strain produced by flexure, lbs. per square inch.

The beams or channels being considered as continuous, then: For Channels, For Beams,

$$S = \frac{t \, d^2 f}{2 \, I'}; (3) \qquad S = \frac{t \, d^2 \, (f - g)}{I}; (5)$$

$$d = \sqrt{\frac{2 \, S \, I'}{t \, f}}; (4) \qquad d = \sqrt{\frac{S \, I'}{t \, (f - g)}}; (6)$$

For the interior beams of a floor, "t" in these formulæ may be taken for the live load only and the sum of the strains produced by lateral thrust and the full vertical loading should not exceed 20,000 lbs. per square inch. As the vertical loading is usually, in building construction, allowed to produce a strain of 16,000 lbs. the lateral strain must therefore be limited to 4,000 lbs. per square inch, and in this case S in equation (4) will be 4,000.

For exterior arches, along walls, or around openings, "t" must be taken for the full live and dead load and the sum of the strains produced by lateral thrust and vertical loading should not exceed 18,000 lbs. per square inch. For wall channels as ordinarily designed it will be found necessary to use a greater number of tie rods than for interior beams, or it may be advisable to use a beam for a skewback instead of a channel.

If equations (4) or (6) give greater values of d than equation (2), the value given by the latter is to be used.

EXPLANATION OF TABLES

OF THE PROPERTIES OF PASSAIC STRUCTURAL SHAPES.

The properties of I beams are calculated for the standard weights of beams usually rolled. The increase of the coefficients of strength for I lb. increase in the weights of the beams is given, by means of which the coefficients of strength for intermediate or heavier weights of beams can be obtained, by multiplying the increase of the coefficient for I lb. by the number of lbs. the section is heavier than the section given in the table.

The properties of channels are given for the standard weights of each section. The increase of the coefficient of strength is given for I lb. increase in the weights of the channels. The coefficient of strength for intermediate or heavier weights of channels can be obtained by increasing the coefficient of strength given for the lighter weight; such increase being obtained by multiplying the increase of the coefficient for I lb. by the number of lbs. the section is heavier than the lighter section given.

The properties of Tees are calculated for all weights rolled. The horizontal portion of the **T** is called the flange, and the vertical portion the stem. For the position of the neutral axis parallel to the flange, there are two values of the section modulus, and the smaller only is given, as the fiber strain calculated from it gives the greater strain in the extreme fibers.

The properties of angles are calculated for the minimum and maximum weights of each size of angle. The section modulus and the coefficient of strength for weights intermediate between the minimum and maximum are approximately proportional to the weights. There are two values of the section modulus for each position of the neutral axis, since the distance between the neutral axis and the extreme fiber is greater on one side of the axis than on the other side. The section modulus given in the table is the smaller of these two values.

The properties of **Z** bars are calculated for thicknesses varying by $\frac{1}{16}$ " for each size.

The coefficients of strength are calculated for a fiber strain of 16,000 lbs. per square inch, for all shapes. This corresponds to a strain of ½ the elastic limit of the structural steel ordinarily used, and provides an ample margin of safety for building construction or other purposes where the loads are quiescent or nearly so. If moving loads are to be provided for, the fiber strain should not exceed 12,000 lbs. per square inch. The coefficients of strength for I beams and channels are also calculated for a fiber strain of 12,000 lbs. per square inch. If a load is suddenly applied, it produces an effect double that produced by the same load in a quiescent state, so that where structures are subjected to the sudden application of loads, as in railroad bridges, still smaller fiber strains than those given in the tables must be used. As the coefficients of strength are proportional to the fiber strains assumed, they can readily be determined for any assumed fiber strain by proportion. Thus, the coefficient of strength for a fiber strain of 8,000 lbs. per square inch, will be \frac{1}{2} the coefficient for 16,000 lbs. fiber strain.

The coefficients of strength given in the tables furnish an easy means of determining the safe uniformly distributed load on any shape, by simply dividing the coefficient, given for the shape, by the length of the span, in feet; the quotient being the safe uniformly distributed load in lbs. Thus, if it is desired to find the safe uniformly distributed load on a $12'' \times 40$ lb. I beam on a span of 20 ft., allowing a maximum fiber strain of 16,000 lbs. per square inch, it is only necessary to divide the coefficient, 500,100, given in the table of properties, by 20; the quotient being 25,005, which is the safe load required, in lbs., including the weight of the beam itself. If a section is to be selected to sustain a certain load, for a given length of span, it will only be necessary to obtain the coefficient of strength required and refer to the tables for the section having a coefficient of that value. The coefficient required is obtained by multiplying the uniformly distributed load, in lbs., by the length of span in feet. Thus, if it is desired to find the size of an I beam required to carry a uniformly distributed load of 30,000 lbs., including its own weight, on a span 20 ft. between supports, allowing a fiber strain of 16,000 lbs. per square inch, the coefficient required is obtained by multiplying the load, in lbs., by the span, in feet, thus;

 $C = 30,000 \times 20 = 600,000 =$ Coefficient required, and by reference to the table of properties of **I** beams, it will be found that a 15" **I** beam, weighing 42 lbs. per foot, has a coefficient of strength of 611,000 and is sufficient for the purpose.

If the load is not uniformly distributed, but is concentrated at the center of the span, multiply the load by 2 and consider the result as a uniformly distributed load.

If the load is not uniformly distributed, or not concentrated at the center of the span, the bending-moment in foot-lbs. must be obtained; this bending-moment in foot-lbs. multiplied by 8 will give the coefficient required. Formulæ for the bending-moments for most cases occurring in ordinary practice are given on pages 107-111. The bending-moment will be in foot-lbs., if the lengths are taken in feet.

The section modulus is used to determine the fiber strain per square inch on a beam, or other shape, subjected to bending, by simply dividing the bending-moment expressed in inch-lbs. by the section modulus. The section modulus is also used to guide in the selection of a beam, or other shape, required to sustain a given load. The section modulus required is obtained by dividing the bending moment, in inch-lbs., by the allowable fiber strain per square inch.

The use of the radii of gyration, given in the tables of properties for all sections, is explained in connection with the tables of the strength of columns.

70
M
BEAMS
PASSAIC STEEL I
AIC
ASS
OF
PERTIES

1			
Radius of Gyration, se sixs lautes petore, inches.	1.27 1.17 1.19 1.13 1.15 1.16	1.30 1.18 1.18 1.12 1.13 1.13	1.25 1.25 1.26 1.26 1.27
Moment of Inertia, neutral axis coincident with center line of web.	42.3 34.2 33.2 28.2 26.7 25.5	39.5 37.4 28.8 23.9 22.7 21.6	37.0 34.6 32.5 30.7
Add to coefficient for each lb. increase in weight of beam.	7830	7060	
Coefficient for fiber strain of 12,000 lbs. per sq. in.	1,204,800 1,115,200 1,076,000 997,400 958,300 919,100	1,005,700 970,400 865,000 787,700 752,400 717,200	797,700 768,300 739,000 709,600
Add to coefficient for each lb. increase in weight of beam.	10440	9410 9410 9410	
Coefficient for fiber action oo. Or lo dirais of lo. oo. In. per sq. in.	1,606,400 1,486,900 1,434,700 1,329,800 1,277,600 1,225,400	1,340,900 1,293,800 1,153,300 1,050,300 1,003,200 956,200	1,063,600 1,024,400 985,200 946,100
Radius of Gyration, redural axis as before, inches.	ကြင်ကိုယ်ထိုင်	6.94 7.04 6.87 6.81 6.94 7.08	5.64 5.72 5.80 5.90
Section Modulus, neutral axis as before.	150.6 139.4 134.5 124.7 119.8 114.9	125.7 121.3 108.1 98.5 94.1 89.6	99.7 96.0 92.4 88.7
Moment of Inertia, H neutral axis square to Web at center.	1506.1 1394.1 1345.1 1246.9 1197.6	1131.2 1091.6 973.1 886.1 846.5 806.8	747.8 720.4 692.8 665.3
Add to thickness of Web for each lb.	.015 .015 .015 .015 .015	.016 .016 .016 .016 .016	. 020 . 020 . 020 . 020
Width of Flange.	6.75 6.45 6.38 6.16 6.07 6.00	6.63 6.55 6.37 6.17 6.08 6.08	6.39 6.29 6.20 6.10
Thickness of Web.	.78 .76 .69 .66 .57	.70 .63 .64 .63 .64	.91 .82 .72 .62
Area.	26.4 25.0 23.5 22.1 20.6 19.1	23.5 22.1 20.6 19.1 17.6 16.2	23.5 22.1 20.6 19.1
Weight per Foot.	98 82 22 89 89 89	825888	85 75 88 65 75
Depth of Beam.	ରର୍ଚ୍ଚର୍ଚ୍ଚର	8188888	2222

(Continued).
L BEAMS
H
STEEL
AIC
ASS
<u>D</u>
OE
PROPERTIES OF PASSAIC STEEL
PRO

_											_	_					_
	Radius of Gyration, neutral axis as before, inches.	r,	1.29	1.20	1.06	1.08	1.23	1.24	1.25	1.15	1.17	1.20	1.01	1 04	1.07	1.09	1.10
	Moment of Inertia, neutral axis coincident with center line of web.	ì	29.5	21.0	14.5	14.0	28.8	56.9	25.2	19.4	18.0	16.8	10.5	10.3		12.2	
	Add to coefficient for each lb. increase in weight of beam.		5880	5880		2880			4710			4710		4710			3930
	Coefficient for fiber strain of 12,000 lbs. per sq. in.	ģ	680,200 594,400	565,000	475,900	458,300			477,600							265,900	
	Add to coefficient for each lb. increase in weight of beam.		7830	7830		7830			6270			6270		6270			5250
	Coefficient for fiber strain of 16,000 lbs. per sq. in.	ပ	906,900				699,500	668,200	636,800	562,800	531,500	500,100	414,000	392,100		354,500	
	Radius of Gyration, neutral axis as before, inches.	ı	6.02 5.87	00.9	5.88	5.90	4.55	4.63	4.72	4.65	4.76	4.90	4.77	4.88		4.05	
	Section Modulus, neutral axis as before.	B	85.0 74.3	9.02	59.5	57.3	65.6	62.6	59.7	52.8	49.8	46.9	38.8	36.7		33.5	
	Moment of Inertia, neutral axis square to Web at center.	I	637.7	529.7	446.1	429.6	393.3	375.7	358.1	316.5	298.9	281.3	232.9	220.5		166.2	
	Add to thickness of Web for each lb. increase in weight.	Inches.	.020	030	.020	020	.025	.025	.025	.025	.025	.025	.025	.025	.029	. 029	.029
	Width of Flange.	Inches.	5.85	5.75	5.56	5.50	6.25								5.21	5.06	2.00
	Thickness of Web.	Ins.	.52	.45	.46	.40	.88	.75	.63	.64	.51	.33	.44	.35	.58	.43	.37
	Area.	Sq. Ins.	17.6 16.2	14.7	13.2	12.4	19.1	17.6	16.1	14.7	13.2	11.8	10.3	9.3	11.8	10.3	9.7
	Weight per Foot.	Lbs.	60 55	20	45	4.5	93	09	55	35	45	40	3	311	40	33	33
	Depth of Beam.	Ins.	15	15	15	cl	12	12	3	3;	3	2	12	12	10	10	2

(Continued).
BEAMS
H
STEEL
77
ASSAIC
2
E F
OF P.
PROPERTIES OF PASSAIC STEEL I BEAMS (conti

Radius of Gyration, g neutral axis as before, inches.	0.96 0.98 0.99	1.03 1.05 1.07 0.91 0.93	0.93 0.97 0.86 0.86
Moment of Inertia, neutral axis coincident with center line of web.	8.1 7.6 7.3	10.4 9.7 9.1 6.1 5.9	6.91 6.56 6.02 4.33 3.95
Add to coefficient for eachlb. increase in weight of beam.	3930	3540	3150
Coefficient for fiber strain of 12,000 lbs. per sq. in.	215,600 203,900 196,000	217,900 207,300 196,700 164,100 158,200 149,900	155,200 148,900 139,400 119,800 113,500
Add to coefficient for each lb. increase in weight of beam.	5250	4710	4170
Coefficient for fiber strain of 16,000 lbs. per sq. in.	287,500 271,700 261,200	290,500 276,300 262,200 218,700 210,900 199,900	206,900 198,400 185,900 159,700 151,400
Radius of Cyration, H neutral axis as before, inches.	3.90 4.00 4.06	3.54 3.63 3.72 3.54 3.60 3.70	3.14 3.20 3.30 3.22 3.32
Section Modulus, neutral axis as before.	26.9 25.5 24.5	27.2 25.9 24.6 20.5 19.8 18.7	19.4 18.6 17.4 15.0 14.2
Moment of Inertia, H neutral axis square to Web at center.	134.5 127.4 122.5	122.5 116.6 110.6 92.3 89.0 84.3	77.6 74.4 69.7 59.9 56.8
Add to thickness in weight.	620. 620.	.033 .033 .033 .033 .033	.037 .037 .037 .037
The Width of Flange.	4.89 4.81 4.75	4.95 4.85 4.63 4.58 4.58	4.56 4.49 4.38 4.20 4.13
Thickness of Web.	.37 .37 .31	13. 14. 16. 16. 17. 17.	84. 89. 89. 85. 85.
Sq. Ins.	8.8 7.9 8.3 7.3	8.8 8.8 6.9 6.9 6.9	0.77.0 0.2.4.0 0.00
Weight per Foot.	8238	882288	18 88 82 81 18 18 18 18 18 18 18 18 18 18 18 18
E Depth of Beam.	999	000000	∞ ∞ ∞ ∞ ∞

Radius of Gyration, g neutral axis as before, inches.	0.93 0.82 0.83	0.78 0.78 0.79 0.73	0.71 0.72 0.64 0.67	0.55 0.56 0.47
Aloment of Inertia, neutral axis coincident with center line of web.	5.19 4.86 3.44 3.12	3.40 3.03 2.74 1.91	2.24 1.98 1.44 1.29	0.89 0.70 0.38
Add to coefficient for eachlb, increase in weight of beam.	2760	2340 2340	1950	1560 1560
Coefficient for fiber strain of 12,000 lbs. per sq. in.	114,300 108,800 91,700 84,800	82,200 76,400 70,500 58,000	54,100 50,200 43,300 38,900	27,400 23,400 18,400
Add to coefficient for each lb. increase in weight of beam.	3660	3150 3150	2610	2100 2100
Coefficient for fiber a strain of 16,000 lbs. per sq. in.	152,400 145,100 122,300 113,100	109,800 101,900 94,000 77,300	72,100 66,900 57,900 52,000	36,500 31,200 24,500
Radius of Gyration, Hefore, inches.	22.22 22.33 23.73 89.83	2.32 2.39 2.47 2.47	1.97 2.06 1.96 2.06	1.53 1.63 1.61
Section Modulus, protest axis as before.	14.3 13.6 11.5 10.6	10.3 9.57 8.81 7.25	6.77 6.28 5.39 4.87	3.42 2.93 2.30
Moment of Inertia, to Web at center.	50.0 47.6 40.1 37.1	30.8 28.7 26.4 21.7	16.9 15.7 13.5 12.1	6.84 5.86 4.59
Add to thickness of Veb for each lb.	.049 .042 .042 .042	.049 .049 .049	.059 .059 .059 .059	.074 .074 .074
I ch Width of Flange. s,	4.17 4.09 3.98 3.88	3.77 3.64 3.52 3.38	3.25 3.13 3.13 3.00	2.69 2.50 2.19
Thickness of Web.	8.8.4.9. 8.8.4.9.	.50 .37 .25 .25	.38 .26 .34 .21	.39 .20 .18
S. Area. Ins.	6.9 4.0 4.1 4.4	5.7 5.0 4.4 3.6	3.8 3.6 2.9	2.9 2.2 1.8
Weight per Foot.	22 20 173 15	80 17½ 15½ 150 150	13 12 12 13 14	10 7½ 6
Depth of Beam.	1111	9999	ರಾದರಾರ	444

CHANNELS.
STEEL
PASSAIC
ES OF
PROPERTIES OF PASSAIC STEEL CHAI

_								
	arallel nnel.	Center of Grav. from back of Channel.	Ins.	08180	22233	69.	84.23	99.
	Neutral Axis parallel to back of Channel.	Radius of Gyration, inches.	Ĥ	x x x x y y y y y x x x x x x x x x x x	<u> </u>	0.00 Z	2821	142
	Neutra to bac	Moment of Inertia.	I, I	11.05 10.14 9.26 8.39 7.90	02.36 02.36 03.36 03.36 03.36 11.36	8.69 8.69	4 8 9 9	2.49
		Add to coeffi- cient for each lb. increase in weight.		2880	4710	4710	3930	3930
	at Center.	Coefficient for fiber strain of rs,000 lbs. per square inch.	Ć	424,400 395,000 865,600 336,200 324,400	252,400 243,000 214,700 189,900	166,300	156,500 136,800 118,700	106,900
	lar to Web	Add to Coeffi- cient for each lb. increase in weight.		7830	6270	6270	5250	5250
	Neutral Axis perpendicular to Web at Center	Coefficient for foer strain of to,000 lbs. per square inch.	0	565,600 526,500 487,300 448,200 432,500	336,400 305,000 305,000 2586,200		182,400 158,400 158,400	
	tral Axis	Radius of Gyration, inches.	н	5.5.5.5 6.5.5.5 6.5.5.8 6.5.5.8	44444 92454 9454 95454	4.59		3.89
	Nen	Section Modulus.	ď	58.1 4.9.4 4.0.0 4.0.0 4.0.0	200 200 200 200 200 200 200 200 200 200	0.00	1.4.1 1.8.0 1.4.1 1.8.0	15.4
		Moment of Inertia.	н	398.0 315.0.4 304.2	189 171 171.6 161.0	124.7	97.8 85.5 74.17	66.82
	lb.	Add to thickno Web for each isw ni seestoni	Inches.	0000000	50000 888888	.025 .025	9000 98888	.029
	ge.	Width of Flan	Ins.		20000000000000000000000000000000000000			2.64
	Thickness of Web.		Ins.	25.6.4.4 24.4.4.4.0	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	e ei	94:68	eigi eigi
		Area.	Sq. In.	14.7 18.2 11.8 10.8 9.7	01 0.00 0.7.00 0.4.1	က် (၁ လ ဝေ ၂	v re re v ce se	5.0
	Joc	Weight per Fo	Lbs.	334588	888888	ន្តន	5505	15
	·lən	Depth of Chan	Ins.	55555	22222	22 3	2222	99

(Continued).
Ω
F
4
M
5
_
田
\equiv
50
02
0
\vdash
\triangleleft
S
TO
4
~
F.
\cup
70
F
3
PROPERTIES OF PASSAIC STEEL CHANNELS
H
1
0
2
A .

	Neutral Axis parallel to back of Channel.	inches. Center of Grav- from back of Channel.	Ins.	9999999	कंकिककंककं 80-80-191	99994655 9996915
Continued).		Radius of Gyration, inches.	H	1224383	156.65 25.25	
		Moment of Inertia,	4	21.63 21.63 21.63 21.63 21.63 21.63	1.84 1.65 1.15 1.08 1.00	1.96 1.51 1.03 1.03 887 814
-		Add to coeffi- cient for each lb. increase in weight.		3540	3150	2750
	at Center.	Coefficient for fiber strain of re, per square inch.	5	119,100 108,500 101,400 87,900 84,300 80,800	83,700 77,400 71,100 62,700 59,600 56,400	73,400 67,900 62,400 51,800 46,300 48,500
	Neutral Axis perpendicular to Web at Center	Add to Coeffi- cient for each lb. increase in weight.		4710	4170	3660
		Coefficient for the for the for the for the foot of th	၁	158,900 144,700 135,300 117,100 112,400 107,700	111,500 103,100 94,800 83,500 79,400	97,900 90,600 83,300 68,900 61,600
		Radius of Gyration, inches.	н	3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	00000000000000000000000000000000000000	60000000000000000000000000000000000000
ABBAIO		Section Modulus.	3	14.9 13.6 12.7 11.0 10.5	10.46 9.67 8.89 7.83 7.44	9.19 8.50 6.47 6.47 8.43
4		Moment of Inertia.	н	67.02 61.06 57.09 49.45 47.47 45.48	41.83 35.70 35.56 31.34 28.20	32.15 29.75 27.35 20.25 19.05
ED OF	.di	Add to thickne Web for each	Inches.	0.	.037 .037 .037 .037 .037	000000
FROFERIES	·SG·	Width of Flan	Ins.	00000000000000000000000000000000000000	99999999999999999999999999999999999999	0.000000000000000000000000000000000000
7. E.	Veb.	Thickness of V	Ins.	4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
FIN		Area.	Sq. In.	3734448 61807448	7-4:0:0:0:0: 0-4:0:0:0:0:0	70.4000000 0.4000000
	.100		Lbs.	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	101111111111111111111111111111111111111	71222 00 00 00 00
	.lən	Depth of Chan	Ins.	000000	20 20 20 20 20 20	

PROPERTIES OF PASSAIC STEEL CHANNELS (Continued).

rallel inel.	Center of Grav. from back of Channel.	Ins.	865888	5. 16: 16: 16:	866644 877746	66 59 64 64 65 64
Neutral Axis parallel to back of Channel.	Radius of Gyration, inches.	À	5115333	4.6.6.	36.64.4 86.64.4	25.24.4. 26.25.4.4.
	Moment of Inertia.	Ĥ	2.59 2.59 2.59 1.75 1.38	.860 .786 .710	1.09 .892 .810 .504	8685 8685 8085 8085
	Add to coefficient for each lb. increase in weight.		2360	5360	1960	1580
at Center.	Coefficient for fiber strain of 12,000 lbs. per square inch.	Ó	74,900 70,200 67,800 56,900 52,200 49,800	38,700 36,400 34,000	36,900 31,000 24,800 20,900	25,000 21,800 16,000 14,400
lar to Web	Add to Coefficient for each lb. increase in weight.		3140	3140	2650 2650	2110 2110
Neutral Axis perpendicular to Web at Center	Coefficient for fiber strain of 16,000 lbs. per square inch.	ರ	99,800 93,500 90,400 75,800 69,500	51,700 48,500 45,400	49,200 43,900 41,200 83,100 27,800	33,300 29,100 21,300 19,200
tral Axis	Radius of Gyration, inches.	н	ពុទ្ធខ្មែន ខ្មែន ពុទ្ធខ្មែន ខ្មែន ពុទ្ធខ្មែន ខ្មែន	9999 9999 8889	3.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	1.51
Nen	Section Modulus.	Ø	8.72 8.73 8.74 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	4.84 4.54 4.25	4.60 4.11 3.87 3.10 2.61	8.13 1.99 1.80 1.80
	Moment of Inertia.	н	28.08 26.31 25.43 19.58 18.70	14.51 13.63 12.75	11.51 10.28 9.67 7.76 6.53	6.95 8.98 8.59 8.59
lb.	or Abd of the Abd of t	Inches.	. 049 . 049 . 049 . 049	.049 .049 .049	.059 .059 .059 .059	.074 .074 .074 .074
Nidth of Flange.			600000000 644890 644890	2.04 1.99 1.94	2.09 1.97 1.91 1.78 1.66	2.01 1.86 1.66 1.59
Thickness of Web.			104.004.002i	8888 8888	4.6.6.6.1. 08.1.	40011
	Атеа.	Sq. In.	2.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	9.9.9. 4.9.8.	2.00.01 2.00.01 2.00.01 2.00.01 3.00.0	9.90 1.75 1.46
.100t.	Weight per F	Lbs.	0327555	00 co	010000	်သင်္ကေ
.lənı	Depth of Chan	Ins.	999999	999	וס וס וס וס וס	4444

FOITAT, TEGS	
- F	
- 2	
٠.	
-	
_	
Ē	
7	
\mathcal{L}	
~	
-	
0_	
,	
_	
\vdash	
7	
7	١
\vdash	
\triangleleft	
C	
-	
70	
24	
~	
PROPERTIES OF PASSAIC STEET, T SHAPES	
T	
P	
0	
2	

	ge and	Radius of Gyration.	i	.86	0.74	0.73	0.64	0.64	0.63	0.62	0.53	0.52	0.43	0.42	0.37	0.37	0.34	0.31	0.26	0.21	
LEGS	d Axis square to Flang coincident with Stem.	Coeff. of Strength.	14.900	11,630	11,500	8,640	8,550	7,700	6,400	5,330	4.480	3,740	2,450	1,920	1.490	1,100	1,070	750	530	230	e inch.
EGUAL	Neutral Axis square to Flange coincident with Stem.	Section Modulus.	!	$\frac{1}{1.09}$	1.08	0.81	08.0	0.72	09.0	0.50	0.42	0.35	0.23	0.18	0.14	0.10	0.10	0.07	0.05	0.022	oer squar
TED.	Neutra	Moment of Inertia.	2.80	2.19	1.89	1.42	1.20	1.08	0.00	0.75	0.52	0.44	0.23	0.18	0.12	0.0	0.08	90.0	0.031	0.011	ooo lbs. 1
SHAFES.	nge.	Radius of Gyration.	1.20	1.23	1.04	1.06	0.88	06.0	06.0	0.30	0.74	0.74	09.0	09.0	0.51	0.51	0.49	0.45	0.37	0.29	fiber strain of 16,000 lbs. per square inch
ו חששומ	rallel to Fla	Coeff. of Strength.	21,530	17,490	16,360	13,120	11,730	10,750	9,180	7,940	6,270	5,330	3,480	2,670	2,070	1,490	1,540	1,140	780	360	n fiber sta
	Neutral Axis parallel to Flange.	Section Modulus.	2.03	1.64	1.52	1.23	1.10	1.01	98.0	0.74	0.59	0.50	0.33	0.35	0.19	0.14	0.14	0.11	0.07	0.031	maximu
LABBAIO	Neni	Moment of Inertia.	5.70	4.70	3.72	3.06	2.31	2.13	1.81	1.59	1.00	0.87	0.45	0.36	0.23	0.17	0.15	0.11	0.064	0.025	Coefficients of Strength are calculated for a maximum
	Dis., Cen.	from top, Inches.	1.18	1.15	1.06	1.01	0.93	0.95	0.88	0.86	92.0	0.74	0.63	0.59	0.54	0.52	0.42	0.44	0.38	0.23	are calcul
TO OT		Square Inches.	4.00	3.07	3.45	2.70	2.94	2.67	2.28	1.95	1.89	1.62	1.26	1.08	06.0	99.0	0.75	0.54	0.45	0.26	Strength
TIND TONT I	Weight	Pounds.	13.6	10.4	11.7	9.5	10.0	9.1		9.9	6.4	ت. ت	4.3	3.7	3.1	2.25	2.52	1.85	1.55	6.0	cients of
TOOT	Thick-	Inches.	59	c 3¦∞	- >\ - >\	::0 ∞	~ ∞ - ∞	$\frac{7}{16}$	2 000	16	ed;∞	16	10	⊣ 4	-√ 14	19	-44	16	16		Coeffi
7	Size of T , in inches,	hange by stem.	4 × 4	4 ×4	$3\frac{1}{2} \times 3\frac{1}{2}$	$3\frac{1}{2} \times 3\frac{1}{2}$	3 ×3	m X		e X X	2½×2½	$2\frac{1}{2} \times 2\frac{1}{2}$	SX XX	2 × 2	$1\frac{3}{4} \times 1\frac{3}{4}$	13×13	12×12	$1\frac{1}{2} \times 1\frac{1}{2}$	14×14	1 ×1	

UNEQUAL LEGS.
ES OF PASSAIC STEEL T SHAPES.
STEEL
PASSAIC
PROPERTIES OF
PRO

CONTROLL LEGS.	ge and	Radius of Gyration.		1.16	1.14	1.20	1.18	0.90	0.88	0.96	0.77	0.75	0.65	0.65	0.69	0.73	0.20	0.20	0.53	
	re to Flang with Stem.	Coeff. of Strength.		23,720	18,130	23,680	18,100	15,000	11,200	11,090	11,400	8,600	6,330	5,300	6,180	6,150	4,430	3,720	2,400	e inch.
	Neutral Axis square to Flange coincident with Stem.	Section Modulus.		2.55	1.70	22.2	1.70	1.39	1.05	1.04	1.07	0.81	0.59	0.50	0.58	0.58	0.42	0.35	0.23	er squar
	Neutra	Moment of Inertia.		5.56	4.25	5.55	4.24	2.78	2.10	5.00	1.88	1.41	0.89	0.75	0.88	0.88	0.52	0.44	0.25	ooo lbs. 1
MATERIA TON	nge.	Radius of Moment of Section Gyration. Inertia. Modulus		08.0	0.81	0.63	0.64	0.85	0.86	0.52	0.88	0.88	0.73	0.73	0.55	0.38	0.91	0.95	0.33	Coefficients of Strength are calculated for a maximum fiber strain of 16,000 lbs. per square inch.
	Neutral Axis parallel to Flange,	Coeff. of Strength.		12,630	9,810	8,680	6,830	12,160	9,600	4,240	12,260	9,450	6,660	5,520	4,100	2,300	8,950	7,730	1,150	n fiber str
		Section Modulus.		1.19	0.92	0.81	0.64	1.14	0.00	0.40	1.15	0.88	0.62	0.52	0.38	0.55	0.84	0.73	0.11	maximur
OTTOWAT T		Moment of Inertia.		5.66	2.13	1.54	1.24	2.48	3.00	09.0	2.43	1.92	1.12	0.94	0.56	0.24	1.72	1.50	0.10	ated for a
N + +	Dis., Cen. of Gravity	from top, Inches.		0.76	69.0	0.61	0.56	0.83	0.78	0.48	0.88	0.83	0.71	89.0	0.54	0.40	0.95	0.93	0.35	are calcul
70 2		Square Inches.		4.11	3.24	3.85	3.03	3.46	2.70	2.28	3.18	2.48	80.2	1.78	1.88	1.68	80.2	1.78	0.00	Strength
	Weight	Weight per foot, Pounds.		14.0	11.0	13.1	10.3	11.7	9.5	%. %.	10.8	80 70	7.1	6.1	6.4	5.7	7.1	6.1	3.1	cients of
1	Thick-	Inches.		-100	co (20	-163	ත්න	-100	co ∞	en ∞	- x	es/so	ದ∤∞	15	en/20	c y∞	co l∞	15	4	Coeffi
4	Size of T, in inches,	flange by stem.		5 × 3	5 ×3	$5 \times 2^{\frac{1}{2}}$	5 ×2½		4 ×3		$3\frac{1}{2} \times 3$	$3\frac{1}{2} \times 3$	3 ×2½	3 ×2½	3 × 8	3 ×1½	$2\frac{1}{2} \times 3$	$2\frac{1}{2} \times 3$	$2\frac{1}{4} \times 1\frac{1}{4}$	

PROPERTIES OF PASSAIC STEEL ANGLES

OF MAXIMUM AND MINIMUM THICKNESSES AND WEIGHTS.
EQUAL LEGS.

Size of Angle, in inches.	Thickness, inches.	Weight per Foot, pounds.	Area of Section, square inches.	Distance from Center of Gravity to Back of Flange, inches.	H Moment of Inertia, axis parallel to flange.	Section Modulus, axis as before.	O Coefficient of Strength, axis as before.	Radius of Gyration, axis as before.	Least Radius of Gyra- tion, axis diagonal.
6 ×6 6 ×6	7 8 3 8	34.0 14.8	10.03 4.36	1.87 1.64	$\begin{array}{c} 35.3 \\ 15.4 \end{array}$	$8.17 \\ 3.52$	87,100 37,500	1.87 1.88	$\frac{1.20}{1.20}$
5 ×5 5 ×5	3438	$ \begin{array}{c} 24.2 \\ 12.3 \end{array} $	7.11 3.61	1.56 1.39	17.0 8.74	$4.78 \\ 2.42$	51,000 25,800	1.55 1.56	1.00
4 ×4 4 ×4	$ \begin{array}{r} 13 \\ \hline 16 \\ 5 \\ \hline 16 \end{array} $	20.8 8.16	$\frac{6.11}{2.40}$	$1.35 \\ 1.12$	$9.45 \\ 3.72$	$\frac{3.32}{1.29}$	35,400 13,800	$\frac{1.24}{1.24}$.80
$\begin{array}{c} 3\frac{1}{2} \times 3\frac{1}{2} \\ 3\frac{1}{2} \times 3\frac{1}{2} \end{array}$	5 8 5 16	$\overline{13.5}$ 7.11	$\frac{3.98}{2.09}$	$1.10 \\ 0.99$	4.33 2.45	1.81	19,300 10,400	1.04 1.08	.70 .70
3 ×3 3 ×3	5 8 1 4	12.1 4.9	$\frac{3.56}{1.44}$	$\begin{array}{ c c }\hline 1.03\\ 0.84\\ \end{array}$	$\frac{3.20}{1.24}$	1.48 .58	15,800 6,190	.94	.60
$\begin{array}{c} 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2} \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{4}}$	7.85 4.05	2.31 1.19	$0.82 \\ 0.72$	$\frac{1.33}{0.70}$.76 .40	8,160 4,270	.76 .77	.50
$\begin{array}{c} 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 2\frac{1}{4} \end{array}$	58 14 12 14 12 3 16	7.17 2.75	2.11	$\begin{array}{ c c } \hline 0.78 \\ 0.63 \\ \hline \end{array}$	1.04	.65	6,940 2,590	.70 .69	.45
2×2 2×2	$\frac{\frac{1}{2}}{\frac{3}{16}}$	6.32 2.41	$\frac{1.86}{0.71}$	$0.72 \\ 0.57$.72	.51	5,440 2,030	.62	.40
$1\frac{3}{4} \times 1\frac{3}{4} \\ 1\frac{3}{4} \times 1\frac{3}{4}$	$ \begin{array}{r} \frac{1}{2} \\ 3 \\ 16 \end{array} $ $ \frac{7}{16} \\ \frac{3}{16} $	$4.72 \\ 2.11$	$\begin{array}{c} 1.39 \\ 0.62 \end{array}$	$0.61 \\ 0.51$.39	.32	$3,450 \\ 1,490$.52	.35
$1\frac{1}{2} \times 1\frac{1}{2}$ $1\frac{1}{2} \times 1\frac{1}{2}$	$\frac{3}{8}$	3.33 1.80	$\begin{array}{c} 0.98 \\ 0.53 \end{array}$	$\begin{array}{ c c } \hline 0.51 \\ 0.44 \\ \hline \end{array}$.19	.19	2,000 1,110	.44	.30
$1\frac{1}{4} \times 1\frac{1}{4}$ $1\frac{1}{4} \times 1\frac{1}{4}$	5 16 1 8	$\frac{2.55}{1.02}$	$\begin{array}{r} 0.75 \\ 0.30 \end{array}$	$\begin{array}{ c c } \hline 0.46 \\ 0.35 \\ \hline \end{array}$.123	.134	1,370 525	.40 .38	.25
1 ×1 1 ×1	1 1 2	1.57	$\begin{array}{c} 0.46 \\ 0.23 \end{array}$	$\begin{array}{ c c } \hline 0.36 \\ 0.30 \\ \hline \end{array}$.045	.064	682 330	.31	.20
$\frac{7}{8} \times \frac{7}{8}$ $\frac{7}{8} \times \frac{7}{8}$	$\begin{array}{c} \frac{3}{1.6} \\ \frac{1}{5} \end{array}$	$\begin{array}{ c c } \hline 0.99 \\ 0.68 \\ \hline \end{array}$	$0.29 \\ 0.20$	$0.29 \\ 0.25$.019	.033	352 240	.26 .27	.175
$ \begin{array}{c c} 7 \times 7 \\ 7 \times 7 \\ \hline 7 \times 7 \\ \hline 3 \times 3 \\ 4 \times 3 \\ 4 \times 3 \\ 4 \end{array} $	$\frac{3}{16}$	$0.85 \\ 0.58$	$0.25 \\ 0.17$	$\begin{bmatrix} 0.26 \\ 0.23 \end{bmatrix}$.012	.024	256 181	.22	.15

Coefficients of strength are calculated for a maximum fiber strain of 16,000 lbs. per square inch.

PROPERTIES OF PASSAIC STEEL ANGLES OF MAXIMUM AND MIN THICKNESSES AND WEIGHTS.

UNEQUAL LEGS.

Size of Thick-Weight Section, Canada								
Thick- Weight Section, Distance of Gravity Lbs. Inches, Parallel to Shorter Flange. Thick- Weight Section, Square Caravity of Distance of Moment Section of Gravity Lbs. Inches, Inch		Least	Kadius of Gyra- tion, Axis diagonal.	86. 86.	.82 .76 .73 .71	.72 .69	.76 .73 .66	
Thick-Weight Section, Center of Instance o		nge.		$\frac{1.19}{1.17}$	1.01 1.02 1.08 .86 .85	.86 .87	1.05 1.07 .83 .89	r.h
Thick-Weight Section, Center of Instance o		Longer Fla	Co- efficient of Strength.	41,000 17,000	25,500 12,900 19,700 7,990	18,650 7,990	24,800 10,600 13,600 7,890	samare ir
Thick-Weight Section, Center of Instance o		rallel to	Section Modu- lus.	3.85	2.39 1.21 1.85 .75	1.75	2.33 .99 1.28 .74	The ner
Thick-Weight Section, Center of Instance o		l Axis Pa		11.81 4.90	6.23 3.18 4.27 1.75	3.89	5.83 2.55 2.73 1.65	16 000
Thick- Ins. s. s. www washed the control of the con		Neutra	Distance of Center of Gravity from back of Flange, Inches.	1.18	1.03 .86 .88 .68	.91 .72	1.12 .93 .87	strain of
Thick- Ins. s. s. www washed the control of the con		mge.	Radius of Gyra-tion.	1.95	1.59 1.60 1.62 1.62	1.43	1.24 1.26 1.23 1.23	m fiher
Thick- Ins. s. s. www washed the control of the con		Shorter Fla	Co- efficient of Strength.	84,100 35,400	48,300 24,400 48,500 20,100	38,200 16,400	31,400 13,200 24,600 13,100	maxim
Thick- Ins. s. s. www washed the control of the con		rallel to		7.89	4.53 2.29 4.55 1.89	$\frac{3.59}{1.54}$	2.95 1.24 2.31 1.23	ad for a
Thick- Ins. s. s. www washed the control of the con		Axis Pa	Moment of Inertia.	31.84 13.51	15.15 7.78 14.91 6.26	10.73	8.12 3.57 6.04 3.38	calculate
Thick- Ins. s. s. www washed the control of the con		Neutral	Distance of Center of Gravity from back of Flange, Inches.	$\frac{2.20}{1.94}$	1.78 1.61 1.90 1.68	$\begin{array}{c} 1.65 \\ 1.47 \end{array}$	1.37 1.18 1.37 1.26	noth are
Thick- Ins. s. s. www washed the control of the con	I	V		8.34	5.98 3.05 5.68 2.40	5.23 2.25	5.23 3.25 2.09	of stre
Thick-			Weight per foot, Lbs.	28.4 12.3	20.3 10.4 19.3 8.16	17.8	17.8 7.65 13.5 7.11	fficients
Size of Angle, in Inches. Angle, in Inches. 6			Thick- ness, Ins.	P ∞ex ∞	অবিভাহত আবদ দে <mark>।</mark> ত	240 L		Coe
			Size of Angle, in Inches.	××	$\times \times \times \times$	XX	XXXX	

Coefficients of strength are calculated for a maximum fiber strain of 16,000 lbs. per square inch.

D MINIMUM	
PROPERTIES OF PASSAIC STEEL ANGLES OF MAXIMUM AND MINIMUM	THICKNESSES AND WEIGHTS UNEQUAL LEGS.
ANGLES (WEIGHTS.
STEEL	S AND
PASSAIC	ICKNESSES
S OF	TH
PROPERTIES	

	Least	Radius of Gyra- tion, Axis diagonal	88	.58 .55	.55	.53	.46	4. 24.	.35	.36	.25 .24	
	nge.	Radius of Gyra- tion.	.90	.75 .74	.73	.55	. 57.	.58	.43	15.	88. 88.	h.
	Neutral Axis Parallel to Longer Flange.	Co- efficient of Strength.	14,080	9,490 4,370	9,170	4,260 5,010	2,770	4,900 2,090	1,920	2,450	1,067	square inc
からヨコ	arallel to	Section Modu- lus.	1.32	.41	.86	.40	98.	.46	.18	.23	.04	bs. per
COAL	l Axis Pa	Moment of Inertia.	2.75	1.61	1.53	.74	.39	.64	.13	.28	0.08	16,000]
ALL WEIGHTON - UNEQUAL LEGS.	Neutra	Distance of Center of Gravity from back of Flange, Inches.	18.	.75	.79		. 49		.42	.52	.38	Coefficients of strength are calculated for a maximum fiber strain of 16,000 lbs. per square inch.
TTTE	ange.	Radius of Gyra- tion.	1.06	1.10	.93		96.	8. 67.	.72	19.	.43	ım fiber
A TAT A	Neutral Axis Parallel to Shorter Flange.	Co- efficient of Strength.	18,750	17,280	12,900	5,970 10,670	5,760	8,000	3,940	3,200	1,546	a maxim
O VIEW	rallel to	Section Modu- lus.	1.76	1.62	1.21	1.00	.54	.75 .29	.23	.30	.06	ted for a
	Axis Pa	Moment of Inertia.	2.33	3.76	2.44	1.17	1.09	1.36	£ 5.	.26	.13	calcula
TITOTIVEDED	Neutra	Distance of Center of Gravity from back of Flange, Inches.	1.16	1.24	1.04	1.08	1.00	.87 .76	85.5	65.	.42	ength are
7111	Ares of	Section, Square Inches.	$\frac{3.67}{1.93}$	3.13	2.84	2.25	1.19	2.18 .81	1.07	1.07	.30 .30	ts of str
		Weight per foot, Lbs.	12.5 6.56	10.6	9.69	7.65	4.05	7.45	3.64	3.64	2 45	oefficien
		Thick- ness, Ins.	rojx rojc	Sp. 14	6. J	4440	4	-100 co	120 To	130	201×	ŭ
		Size of Angle, in Inches.	35 × 3 37 × 3 37 × 3	$\frac{3\frac{1}{2}}{3\frac{1}{2}} \times \frac{2\frac{1}{2}}{2\frac{1}{2}}$	X:	√2° αν Χ Χ π αν	\times	25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 2	24 × 12 24 × 12 24 × 12	% % % % % % % % % % % % % % % % % % %	13 × 12 × 12 × 12 × 12 × 12 × 12 × 12 ×	•

AREAS OF PASSAIC STEEL ANGLES.

Size of Angle,		Area	as, in S	Square	Inches	s, for d	ifferent	Thick	nesses	
in Inches.	5 11	3"	7/1	1//	9 // 16	<u>5</u> //	11// 16	3//	13// 16	7//8
$\begin{array}{c} 6 \times 6 \\ 6 \times 4 \end{array}$		4.36 3.61			$\frac{6.61}{5.48}$	$7.36 \\ 5.86$		8.52 7.11	9.28 7.73	10.03 8.34
$ \begin{array}{c} 5 \times 5 \\ 5 \times 3\frac{1}{2} \\ 5 \times 3 \end{array} $	2.40	$3.61 \\ 3.05 \\ 2.90$	$4.23 \\ 3.58 \\ 3.31$	4.11	4.64	5.86 4.92 4.68	5.45	5.98		
$4\frac{1}{2} \times 3$	2.25	$\frac{1}{2.71}$	3.09	$\frac{3.56}{-}$	4.03	$\frac{1}{4.30}$	4.76	$\frac{1}{5.23}$		
$\begin{array}{c c} 4 & \times 4 \\ 4 & \times 3\frac{1}{2} \\ 4 & \times 3 \end{array}$	2.40 2.25 2.09	2.71	3.31 3.09 2.87	3.56	4.03	4.30	5.11 4.76		6.11	
$ \begin{array}{ c c c c c c } \hline 3\frac{1}{2} \times 3\frac{1}{2} \\ 3\frac{1}{2} \times 3 \end{array} $	$2.09 \\ 1.93$	$2.53 \\ 2.30$	$2.87 \\ 2.71$	$\frac{3.25}{3.00}$	$3.69 \\ 3.41$	3.98 3.67				
Size of Angle,		Area	as, in S	Square	Inches	, for di	fferent	Thick	nesses.	
in Inches.	1//	3 "	1//	5 // 16	3//	76"	1//	9//	<u>5</u> //	11/1 16
$3\frac{1}{2} \times 2\frac{1}{2}$			1.44	1.81	2.11	2.48	2.75	3.13		
$ \begin{vmatrix} 3 & \times & 3 \\ 3 & \times & 2\frac{1}{2} \\ 3 & \times & 2 \end{vmatrix} $			$1.44 \\ 1.31 \\ 1.19$		1.92	2.27	2.50	3.18 2.84	3.56	
$ \begin{array}{ c c } \hline 2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2 \end{array} $.81	$\frac{1.19}{1.09}$	1		$\frac{2.00}{1.89}$	$2.31 \\ 2.18$			
$\begin{array}{ c c c }\hline 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 1\frac{1}{2} \\ \end{array}$.81	1.06 .90	$1.34 \\ 1.07$		1.83	2.11			
$\begin{array}{ccc} 2 & \times 2 \\ 2 & \times 1\frac{3}{4} \end{array}$.71	.94			1.61	1.86			
$\begin{array}{ c c }\hline 1\frac{3}{4} \times 1\frac{3}{4} \\ 1\frac{1}{2} \times 1\frac{1}{2} \\ 1\frac{3}{8} \times 1\frac{1}{8} \\ \end{array}$.30	.62 .53 .45	.69	.87	.98					
$ \begin{array}{ c c } \hline 1\frac{1}{4} \times 1\frac{1}{4} \\ 1 \times 1 \\ \frac{7}{8} \times \frac{7}{8} \\ \frac{3}{4} \times \frac{3}{4} \end{array} $.30 .23 .20 .17	.34	.46	1	5					

WEIGHTS

OF PASSAIC STEEL ANGLES.

Size of Angle,			Weight	s per f	oot for	differ	ent thic	ckness	es.	
in Inches.	5 ''	3//	7/1	1//2	9//	<u>5</u> //	11/1	3//	13// 16	7//8
$\begin{array}{c} 6 \times 6 \\ 6 \times 4 \end{array}$		14.8 12.3	17.4 14.4					$29.0 \\ 24.2$		$\frac{34.0}{28.4}$
$ \begin{array}{c} 5 \times 5 \\ 5 \times 3\frac{1}{2} \\ 5 \times 3 \end{array} $	8.16	$ \begin{array}{r} 12.3 \\ 10.4 \\ 9.86 \end{array} $	14.4 12.2 11.2	14.0	15.8	16.7	21.8 18.5 17.6	20.3		
$4\frac{1}{2} \times 3$	7.65	9.21	10.5	12.1	13.7	14.6	16.2	17. 8		
$\begin{array}{c} 4 & \times 4 \\ 4 & \times 3\frac{1}{2} \\ 4 & \times 3 \end{array}$	8.16 7.65 7.11	9.21	$11.2 \\ 10.5 \\ 9.80$	12.1	13.7	14.6	16.2	19.1 17.8	20.8	
$3\frac{1}{2} \times 3\frac{1}{2} \times 3$	$7.11 \\ 6.56$	8.60 7.82	$9.76 \\ 9.21$	11.0 10.2	12.5 11.6	$\begin{array}{c} 13.5 \\ 12.5 \end{array}$				
Size of Angle,		,	Weights	per f	oot for	differe	ent thic	knesse	es.	
in Inches.	1// 8	3/1 16	1//	5 // 16	3//	7 '' 16''	1//	9//	<u>5</u> //	11/1
$\frac{3\frac{1}{2}\times2\frac{1}{2}}{-}$			4.90	6.15	7.17	8.43	9.35	10.6		
$\begin{array}{c} 3 \times 3 \\ 3 \times 2\frac{1}{2} \\ 3 \times 2 \end{array}$				5.64	6.53	7.72	$9.56 \\ 8.50 \\ 7.65$	$ \begin{array}{r} 10.8 \\ 9.69 \end{array} $	12.1	
$egin{array}{c} 2rac{1}{2} imes 2rac{1}{2} \ 2rac{1}{2} imes 2 \end{array}$		2.75	4.05 3.70							
$egin{array}{l} 2rac{1}{4} imes 2rac{1}{4} \ 2rac{1}{4} imes 1rac{1}{2} \end{array}$		$2.75 \\ 2.28$	$\frac{3.60}{3.06}$		5.20	6.22	7.17			
$\begin{array}{ccc} 2 & \times & 2 \\ 2 & \times & 1\frac{3}{4} \end{array}$		$\frac{2.41}{2.28}$	$\frac{3.19}{3.06}$		4.62	5.47	6.32			
$\begin{array}{c} 1\frac{3}{4} \times 1\frac{3}{4} \\ 1\frac{1}{2} \times 1\frac{1}{2} \\ 1\frac{3}{8} \times 1\frac{1}{8} \end{array}$	1.02	2.11 1.80 1.53	2.75 2.35 1.90	2.96		4.72				
$\begin{array}{c} 1\frac{1}{4} \times 1\frac{1}{4} \\ 1 \times 1 \\ \frac{7}{8} \times \frac{7}{8} \\ \frac{3}{4} \times \frac{3}{4} \end{array}$	1.02 .78 .68 .58	1.46 1.15 .99 .85	2.01 1.57	2.55						•

BARS.
3A
1
N
OF PASSAIC STEEL
SAIC
SS
P
OF
Ñ
PROPERTIES
JR.
PI
200
PI

													_				_		_
	Least Radius of	Gyration, neut. axis diagonal.	0.83	0.84	0.81	0.84	0.81	0.85	0.83	0.75	0.76	0.77	0.74	0.75	0.76	0.73	0.75	92.0	
	ith Web.	Coeff. of Strength.	67,500	89,800	92,400	112,800	112,300	121,800	131,200	42,700	51,100	59,500	61,400	69,000	76,600	75,800	82,700	91,500	
TTTTO	Neutral Axis coincident with Web	Rad. of Gyration.	1.41	1.44	1.37	1.41	1.34	1.36	1.37	1.35	1.37	1.38	1.31	1.33	1.35	1.28	1.30	1.31	
	al Axis coi	Section Modulus.	3.27	3.81	3.91	4.98	4.94	5.47	6.03	2.00	2.45	2.35	3.03	3.47	3.94	3.91	4.37	4.84	
	Neutra	Mom't of Inertia.	$9.11 \\ 10.95$	12.87	12.59	16.34	15.44	17.27	19.18	6.18	7.65	9.50	9.02	10.51	12.06	11.37	12.83	14.36	
THAT THE OF THE STATE OF THE	r to Web.	Coeff. of Strength.	90,000 104,800	119,700	123,200	150,400	149,800	162,300	174,900	57,000	68,200	79,400	81,900	91,900	102,100	101,000	110,300	122,000	
TOOT	Neutral Axis perpendicular to Web	Rad. of Gyration.	2.35	2.36	25.28 25.28	2.30 2.30	2.21	2.55	2.22	1.98	1.99	1.99	1.91	1.91	1.92	1.84	1.85	1.88	
7 70	al Axis pe	Section Modulus.	8.44 9.83	11.22	11.55	14.10	14.04	15.22	16.40	5.34	6.39	7.44	7.68	8.62	9.57	9.47	10.34	11.44	
\sim	Neutr	Mom't of Inertia.	25.32 29.80	34.36	34.64	43.18	42.12	46.13	50.55	13.36	16.18	19.07	19.19	21.83	24.53	23.68	26.16	29.31	
TATET -		Section, Sq. Ins.	4.59	6.19	6.68	8.25	8.63	9.40	10.17	3.40	4.10	4.81	5.25	5.94	6.64	96.9	7.64	8.33	
1001	Weight	per Foot, Lbs.	15.6 18.3	21.0	22.7	28.0	29.3	32.0	34.6	11.6	13.9	16.4	17.8	20.3	25.6	23.7	56.0	28.3	
	Thick-	ness of Metal, Ins.	8 17	-lo	5 16	× 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	03 4	eske	n-po	15	es/00	18	- 54	16	rc ∞	11	::\ 4	erko L	
	Width	of Flange, Ins.	93. 10. 10.	35	- % ರಾ -	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	31	3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	es Sp	31	3.1°C	333	$3\frac{1}{4}$	$3\frac{5}{16}$	888 888	60 - 4,	$\frac{3^{5}}{16}$	38	
	Depth	ot Web, Ins.	$6_{\overline{16}}$	6 1	9	61 63 63 63	9	6_{16}	89	5	$5\frac{1}{16}$	5. 18.	ಹ	$\frac{516}{16}$	5. 8.	ر ا مد	2 <u>1</u> 6	5	

Coefficients are calculated for a maximum fiber strain of 16,000 lbs, per square inch.

S (Continued).
Z BARS
SSAIC
PA
SOF
PROPERTIES OF PASSAIC STEEL

Width	· ·	PER Weight	PROPERTIES		PASS	OF PASSAIC STE	STEEL.	•	Z BARS (continued). Neutral Axis coincident with Web.	S (Continued).	nued).	Least
of Flange, Ins.			of Section, Sq. Ins.	Mom't of Section Inertia. Modulus		Rad. of Gyration.	Coeff. of Strength.	Mom't of Inertia.	Mom't of Section Rad. of Inertia. Modulus. Gyration	Rad. of Gyration.	Coeff. of Strength.	Kadius of Gyration, neut. axis diagonal.
3 3 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	14 8×	8.2 10.3 12.4	2.41 3.03 3.66	6.28 7.94 9.63	3.14 3.91 4.67	1.62 1.62 1.62	33,500 41,700 49,800	4.23 5.46 6.77	1.44 1.84 2.26	1.33 1.34 1.36	25,100 31,300 37,400	0.67 0.68 0.69
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.8 15.8 17.9	4.05 4.66 5.27	9.66 11.18 12.74	4.83 5.50 6.18	1.55	51,500 58,700 65,900	6.73 7.96 9.26	2.37 2.77 3.19	1.39	38,600 44,000 49,400	0.66 0.67 0.69
	31 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.9 20.9 22.9	5.55 · 6.14 6.75	12.11 13.52 14.97	6.05 6.65 7.26	1.48 1.48 1.49	64,500 70,900 77,400	8.73 9.95 11.24	3.18 3.58 4.00	1.25 1.27 1.29	48,400 53,200 58,100	0.66 0.67 0.69
$\frac{211}{216}$	1 2 4 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.7	1.97 2.48	2.87 3.64	1.92 2.38	1.21	20,500 25,400	2.81 3.64	1.10	1.19	15,400 19,000	0.55
211 233 24	3 10 10	9.7	3.36	3.85	2.57 2.98	1.16	27,400 31,800	3.92	1.57	1.17	20,600 23,800	0.55
211 23 24	100	12.5	3.69	4.59	3.06	1.12	32,600 36,600	4.85	1.99	1.15	24,500 27,400	0.55
		7						:	•			

Coefficients are calculated for a maximum fiber strain of 16,000 lbs. per square inch.

EXPLANATION OF TABLES ON SAFE LOADS.

The following tables give the safe uniformly distributed loads, in tons of 2,000 lbs., on Passaic Structural Shapes calculated for a maximum fiber strain of 16,000 lbs. per square inch. The loads given in the tables include the weights of the shapes, which must be deducted from the tabular loads in order to obtain the net superimposed loads which the shapes will carry.

Safe loads are given for the principal weights of **I** beams usually rolled. The safe loads for intermediate or heavier weights of beams than those tabulated, can be obtained by the use of the separate column of corrections given for each size, which states the increase of safe load for each additional lb. increase in the weight per foot of the beam.

The safe loads of channels are tabulated only for the minimum weights. A separate column for each depth of channel gives the additional safe load for each lb. per foot increase in the weight of the channel, by the use of which the safe loads on the heavier weights of channels may be obtained.

The safe loads for Tees are given for all weights rolled.

The safe loads for Angles are given only for the minimum and maximum weights. The safe loads for intermediate weights may be obtained approximately by proportion.

The safe loads for **Z** Bars are given for all the weights rolled.

It is assumed in these tables that the compression flanges of the beams or shapes are secured against yielding sideways. They should be held in position at distances not exceeding 20 times the width of the flange, otherwise the allowable loads should be reduced according to the following table:

BEAMS UNSUPPORTED SIDEWAYS.

Unsupporte of Be		Gre	eatest Load		Unsup	oorted of Bea	Length m.	Greatest Safe Load.		
20 × flan	ge width.	1.01	abula	r load.	50 × 1	flange	width.	0.7	tabula	ar load.
30 " "	//	0.9	"/	//	60 "	//	//	0.6	//	"
40 " "	11	0.8	//	//	70 "	//	//	0.5	//	"

Deflection Coefficients are given for all the shapes, by the use of which the deflections, under the tabular loads, can be obtained by simply multiplying the Deflection Coefficient of the shape by the square of the span, in feet; the result being the deflection in inches. Thus, the deflection of a 15" × 42 lb. I beam on a span of 20 feet, fully loaded, is obtained by multiplying the Deflection Coefficient (.001103) by 20; the result being 0.44, which is the deflection in inches, or about 76".

Beams used in floors should not only be strong enough to carry the superimposed loads, but also sufficiently rigid to prevent vibration. For beams carrying plastered ceilings, if the deflection exceeds $\frac{1}{360}$ of the distance between supports, or $\frac{1}{30}$ of an inch per foot of span, there is danger of cracking the plaster. This limit is indicated in the tables by keavy cross lines beyond which the beams should not be used if intended to carry plastered ceilings, unless the allowable loads given in the tables are reduced in the following manner:

Let \triangle = deflection coefficient for the shape.

= limiting span, in feet, at which the shape, fully loaded, has a deflection of $\frac{1}{360}$ of span.

L' = given span, in feet.

W' = tabular safe load for span L'.

W'' = load on span L' producing deflection of $\frac{1}{360}$ of

Then,

Then,

$$L = \frac{I}{30 \triangle}, (I); W'' = \frac{W'}{30 \triangle L'}, (2); W'' = \frac{L}{L'} W', (3).$$
The state of the lead on a 18" of the Land of the lead on a 18" of the Land of the lead on a 18" of the Land of the lead on a 18" of the Land of the lead on a 18" of the Land o

Thus, if it is desired to find the load on a $10'' \times 25$ lb. I beam on a span of 30 ft., which will produce a deflection of only $\frac{1}{360}$ of the span; the safe load, 4.35 tons, given in the table for a span of 30 feet, must be reduced by formula (3) as follows:

$$W'' = \frac{20}{30} \times 4.35 = 2.90 \text{ tons.}$$

It may generally be assumed that the above limit of deflection is not exceeded, both for rolled and built beams, unless the depth of the beam is less than $\frac{1}{24}$ of the span. It should be noted, however, that some local building ordinances provide that no beam shall be of less depth than $\frac{1}{20}$ of the span.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL **T** BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

ŀ								
l	Feet.			20′	'I			a. Lb. eight.
	Span, in Feet.	90 Lbs. per Foot.	85 Lbs. per Foot.	80 Lbs. per Foot.	75 Lbs. per Foot.	70 Lbs. per Foot.	65 Lbs. per Foot.	Add for ea. Lb. Inc. in Weight.
	10 11 12 13 14 15 16 17 18 19 20 21 22 23	80.3 73.0 66.9 61.8 57.4 53.6 50.2 47.3 44.6 42.3 40.2 38.3 36.5 34.9	74.3 67.6 62.0 57.2 53.1 49.6 46.5 43.7 41.3 39.1 37.2 35.4 33.8 32.3	71.7 65.2 59.8 55.2 51.2 47.8 44.8 42.2 39.9 37.8 35.9 34.2 32.6 31.2	66.5 60.5 55.4 51.2 47.5 44.3 41.6 39.1 36.9 35.0 33.3 31.7 30.2 28.9	63.9 58.1 53.2 49.1 45.6 42.6 39.9 37.6 35.5 33.6 31.9 30.4 29.0 27.8	61.3 55.7 51.0 47.1 43.8 40.9 38.3 36.0 34.1 32.3 30.7 29.2 27.8 26.6	0.52 0.48 0.44 0.40 0.37 0.35 0.33 0.31 0.29 0.28 0.26 0.25 0.24 0.23
	24 25 26 27 28 29	33.5 32.1 30.9 29.8 28.7 27.7	31.0 29.7 28.6 27.5 26.6 25.6	29.9 28.7 27.6 26.6 25.6 24.7	27.7 26.6 25.6 24.6 23.8 22.9	26.6 25.6 24.6 23.7 22.8 22.0	25.5 24.5 23.6 22.7 21.9 21.2	0.22 0.21 0.20 0.19 0.19 0.18
	30 31 32 33 34 35 36 37 38 39 40	26.8 25.9 25.1 24.3 23.6 23.0 22.3 21.7 21.1 20.6 20.1	24.8 24.0 23.2 22.5 21.9 21.2 20.7 20.1 19.6 19.1 18.6	23.9 23.1 22.4 21.7 21.1 20.5 19.9 19.4 18.9 18.4 17.9	22.2 21.5 20.8 20.2 19.6 19.0 18.5 18.0 17.5 17.1	21.3 20.6 20.0 19.4 18.8 18.3 17.7 17.3 16.8 16.4	20.5 19.8 19.2 18.6 18.1 17.6 17.1 16.5 16.1 15.7 15.3	0.17 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.13
			De	eflection	Coefficie	nt .0008	328	

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

IN Tons of 2000 LBS., BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.			18	" I			Lb.
Span, in F	80 Lbs. per Foot	75 Lbs. per Foot.	70 Lbs. per Foot.	65 Lbs. per Foot.	60 Lbs. per Foot.	55 Lbs. per Foot.	Add for ea. Lb. Inc. in Weight.
10 11 12 13 14 15 16 17	67.0 60.9 55.9 51.6 47.9 44.7 41.9 39.4	64.7 58.8 53.9 49.8 46.2 43.1 40.4 38.1	57.7 52.4 48.1 44.4 41.2 38.4 36.0 33.9	52.5 47.7 43.8 40.4 37.5 35.0 32.8 30.9	50.2 45.6 41.8 38.6 35.8 33.4 31.4 29.5	47.8 43.5 39.8 36.8 34.2 31.9 29.9 28.1	0.47 0.43 0.39 0.36 0.34 0.31 0.29 0.28
18 19	37.3 35.3	$\begin{array}{r} 35.9 \\ 34.1 \end{array}$	$\begin{array}{c} 32.0 \\ 30.4 \end{array}$	$\frac{29.2}{27.6}$	$\begin{bmatrix} 27.9 \\ 26.4 \end{bmatrix}$	$\begin{array}{ c c c }\hline 26.6 \\ 25.2 \\ \hline \end{array}$	$\begin{array}{c} 0.26 \\ 0.25 \end{array}$
20 21 22 23 24 25 26 27 28 29	33.5 31.9 30.5 29.1 27.9 26.8 25.8 24.8 24.0 23.1	32.4 30.8 29.4 28.1 27.0 25.9 25.0 24.0 23.1 22.3	28.8 27.5 26.2 25.1 24.0 23.1 22.2 21.4 20.6 19.9	26.3 25.0 23.9 22.8 21.9 21.0 20.2 19.4 18.8 18.1	25.1 23.9 22.8 21.8 20.9 20.1 19.3 18.6 17.9 17.3	23.9 22.8 21.7 20.8 19.9 19.1 18.4 17.7 17.1 16.5	0.24 0.22 0.21 0.20 0.20 0.19 0.18 0.17 0.17
30 31 32 33 34 35 36 37 38 39	22.4 21.6 21.0 20.3 19.7 19.2 18.6 18.1 17.7 17.2	21.6 20.9 20.2 19.6 19.0 18.5 18.0 17.5 17.0 16.6	19.2 18.6 18.0 17.5 17.0 16.5 16.0 15.6 15.2	17.5 17.0 16.4 15.9 15.5 15.0 14.6 14.2 13.8 13.5	16.7 16.2 15.7 15.2 14.8 14.3 13.9 13.6 13.2 12.9	15.9 15.4 14.9 14.5 14.1 13.7 13.3 12.9 12.6 12.3	0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12
40	16.8	16.2	14.4	13.1	12.5	12.0	0.12

Deflection Coefficient, .000920

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL **T** BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.	15″ I										
Span, in F	80 Lbs. per Ft.	75 Lbs. per Ft.	70 Lbs. per Ft.	65 Lbs. per Ft.	60 Lbs. per Ft.	55 Lbs. per Ft.	50 Lbs. per Ft.	45 Lbs. per Ft.	42 Lbs. per Ft.	Add for ea. Lb. Inc. in Weight.	
100 111 122 133 144 155 166 177 18 19 20 21 222 233 244 255 266 277 288 299 30 31 32	53.2 48.3 44.3 40.9 38.0 35.5 33.2 31.3 29.5 27.9 26.6 25.3 24.2 23.1 22.2 21.3 20.5 19.7 19.0 18.3 17.8	51.2 46.6 42.7 39.4 36.6 34.2 32.0 25.6 24.4 23.3 22.3 21.3 20.5 19.7 19.0 18.3 17.7 17.1	Ft. 49.3 44.8 41.1 37.9 35.2 32.8 30.8 29.0 27.4 25.9 24.6 23.5 22.4 21.4 20.6 19.7 19.0 18.2 17.6 17.0 16.4	Ft. 47.3 43.0 39.4 36.4 33.8 29.6 27.8 26.3 24.9 23.7 22.5 20.6 19.7 18.9 16.9 16.3 15.8	Ft. 45.4 41.2 37.8 34.9 32.4 30.2 28.3 26.7 25.2 23.9 22.7 21.6 20.6 19.7 18.9 18.1 17.4 16.8 16.2 15.6 15.1	Ft. 39.6 36.0 33.0 30.5 28.3 26.4 24.8 23.3 22.0 20.9 19.8 18.9 17.2 16.5 15.8 15.2 14.7 14.2 13.7 13.2	737.7 34.2 31.4 29.0 26.9 25.1 23.5 22.2 20.9 19.8 17.9 17.1 16.4 15.7 14.5 14.0 13.5 13.0 12.6 12.2 11.8	${31.7}$ 28.8 26.4	10.2 10.6 10.6 10.6 10.6 10.6 10.6 10.2 10.6	0.39 0.36 0.33 0.30 0.28 0.26 0.25 0.23 0.22 0.21 0.20 0.19 0.16 0.16 0.15 0.14 0.14 0.13 0.13 0.13	
32 33 34 35 36 37 38 39 40	16.1 15.6 15.2 14.8 14.4 14.0 13.6	16.0 15.5 15.1 14.6 14.2 13.8 13.5 13.1 12.8	15.4 14.9 14.5 14.1 13.7 13.3 13.0 12.6 12.3	14.8 14.3 13.9 13.5 13.1 12.8 12.4 12.1 11.8	14.2 13.7 13.3 13.0 12.6 12.3 11.9 11.6 11.3	12.4 12.0 11.7 11.3 11.0 10.7 10.4 10.2 9.90	11.4 11.1 10.8 10.5 10.2 9.91 9.66	9.61 9.33 9.06 8.82 8.57 8.35 8.13	9.26 8.98 8.73 8.49 8.26 8.04 7.83	$\begin{array}{c} 0.13 \\ 0.12 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.10 \\ 0.10 \\ 0.10 \\ \end{array}$	
			D	eflection	on Co	efficien	t .001	103			

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL **T** BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.	12" I											
Span, in Feet.	65 Lbs. per Ft.	60 Lbs. per Ft.	55 Lbs. per Ft.	50 Lbs. per Ft.	45 Lbs. per Ft.	40 Lbs. per Ft.	35 Lbs. per Ft.	31½ Lbs. per Ft.	Add for ea. lb. Inc. in Weight			
9	43.7 38.9	41.8 37.1	39.8 35.4	$\frac{35.2}{31.2}$	$\frac{33.2}{29.5}$	31.3 27.8	$25.9 \\ 23.0$	24.5 21.8	$\begin{array}{c} 0.39 \\ 0.35 \end{array}$			
10 11 12 13 14 15 16 17 18	35.0 31.8 29.2 26.9 25.0 23.3 21.9 20.6 19.4	33.4 30.4 27.8 25.7 23.9 22.3 20.9 19.7 18.6	31.8 28.8 26.5 24.5 22.8 21.2 19.9 18.7 17.7	28.1 25.6 23.5 21.6 20.1 18.8 17.6 16.6 15.6	26.6 24.2 22.1 20.4 19.0 17.7 16.6 15.6 14.8	25.0 22.7 20.8 19.2 17.9 16.7 15.6 14.7 13.9	20.7 18.8 17.3 15.9 14.8 13.8 12.9 12.2 11.5	19.6 17.9 16.4 15.1 14.0 13.1 12.3 11.5 10.9	$\begin{array}{c} 0.31 \\ 0.29 \\ 0.26 \\ 0.24 \\ 0.22 \\ 0.21 \\ 0.20 \\ 0.18 \\ 0.17 \end{array}$			
19 20 21 22 23 24	18.4 17.5 16.7 15.9 15.2 14.6	17.6 16.7 15.9 15.2 14.5 13.9	16.8 15.9 15.2 14.4 13.8 13.3	14.8 14.1 13.4 12.8 12.2 11.7	13.3 12.7 12.1 11.6 11.1	13.2 12.5 11.9 11.4 10.9 10.4	$ \begin{array}{r} 10.9 \\ \hline 10.4 \\ 9.86 \\ 9.41 \\ 9.00 \\ 8.63 \end{array} $	$9.33 \\ 8.91 \\ 8.52$	0.17 0.16 0.15 0.14 0.14 0.13			
25 26 27 28 29	14.0 13.5 13.0 12.5 12.1	13.4 12.9 12.4 11.9 11.5	12.7 12.2 11.8 11.4 11.0	11.3 10.8 10.4 10.1 9.70	10.6 10.2 9.84 9.49 9.16	10.0 9.62 9.26 8.93 8.62	8.28 7.96 7.67 7.40 7.14	7.54 7.26 7.00	0.13 0.12 0.12 0.11 0.11			
30 31 32 33 34 35	11.7 11.3 10.9 10.6 10.3 10.0	11.1 10.8 10.4 10.1 9.83 9.55	10.6 10.3 10.0 9.6 9.4 9.1	9.38 9.08 8.79 8.53 8.28 8.04	8.86 8.57 8.30 8.05 7.82 7.59	8.34 8.07 7.81 7.58 7.35 7.14	6.90 6.68 6.47 6.27 6.09 5.92	6.32 6.13 5.94 5.76	0.10 0.10 0.10 0.10 0.09 0.09			

Deflection Coefficient .001379

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL **I** BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.			ight.				
Span, in Feet.	40 Lbs. per Foot.	35 Lbs. per Foot.	33 Lbs. per Foot.	30 Lbs. per Foot.	27 Lbs. per Foot.	25 Lbs. per Foot.	Add for ea. Lb. Inc. in Weight.
8 9	$23.8 \\ 21.2$	$22.2 \\ 19.7$	21.5 19.1	18.0 16.0	17.0 15.1	16.3 14.5	$\begin{array}{c} 0.33 \\ 0.29 \end{array}$
10	19.0	17.7	17.2	14.4	13.6	13.1	0.26 0.24 0.22 0.20 0.19
11	17.3	16.1	15.6	13.1	12.4	11.9	
12	15.9	14.8	14.3	12.0	11.3	10.9	
13	14.7	13.6	13.2	11.1	10.5	10.1	
14	13.6	12.7	12.3	10.3	9.70	9.33	
15	12.7	11.8	11.5	9.58	9.06	8.71	0.17
16	11.9	11.1	10.8	8.98	8.49	8.16	0.16
17	11.2	10.4	10.1	8.46	7.99	7.68	0.15
18	10.6	9.85	9.56	7.99	7.55	7.26	0.15
19	10.0	9.33	9.05	7.57	7.15	6.87	0.14
20	9.52	8.86	8.60	7.19	6.79	6.53	0.13
21	9.07	8.44	8.19	6.85	6.47	6.22	0.12
22	8.65	8.06	7.82	6.53	6.18	5.94	0.12
23	8.28	7.71	7.48	6.25	5.91	5.68	0.11
24	7.93	7.39	7.17	5.99	5.66	5.44	0.11
25	7.62	7.09	6.88	5.75	5.43	5.22	0.10
26	7.32	6.82	6.62	5.53	5.23	5.02	0.10
27	7.05	6.56	6.37	5.32	5.03	4.84	0.10
28	6.80	6.33	6.14	5.13	4.85	4.66	0.09
29	6.57	6.11	5.93	4.96	4.68	4.50	0.09
30	6.35	5.91	5.73	4.79	4.53	4.35	0.09
31	6.14	5.72	5.54	4.64	4.38	4.21	0.08
32	5.95	5.54	5.38	4.49	4.25	4.08	0.08
33	5.77	5.37	5.21	4.36	4.12	3.96	0.08
34	5.60	5.21	5.06	4.23	4.00	3.84	0.08
35	5.44	5.06	4.91	4.11	3.88	3.73	0.08

Deflection Coefficient,

.001655

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL **I** BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.			9′′ I		h Lb. 'eight.	8″ I				h Lb. 'eight.	
Span, in F	33 Lbs. per Ft.	30 Lbs. per Ft.	27 Lbs. per Ft.	25 Lbs. per Ft.	21 Lbs. per Ft.	Add for each Lb. Increase in Weight.	27 Lbs. per Ft.	22 Lbs. per Ft.	20 Lbs. per Ft.	18 Lbs. per Ft.	Add for each Lb. Increase in Weight
8	20.7 18.2 16.1	19.7 17.3 15.4	18.7 16.4 14.6	15.6 13.7 12.2	$14.3 \\ 12.5 \\ 11.1$	0.29	14.8 12.9 11.5	13.3 11.6 10.3	9.98	10.8 9.45 8.41	0.26
11 12 13	14.5 13.2 12.1 11.2 10.4	13.8 12.6 11.5 10.6 9.87	13.1 11.9 10.9 10.1 9.36	10.9 9.94 9.11 8.41 7.81	10.0 9.09 8.33 7.69 7.14	$\begin{array}{c} 0.20 \\ 0.18 \end{array}$	10.3 9.40 8.62 7.96 7.39	8.45 7.75 7.15	$7.26 \\ 6.66 \\ 6.14$	7.57 6.88 6.31 5.82 5.41	$0.19 \\ 0.17 \\ 0.16$
15 16 17	8.54	9.21 8.64 8.13	8.74 8.19 7.71	7.29 6.84 6.43	6.66 6.25 5.88	$0.15 \\ 0.14$	6.90 6.47 6.08	$\frac{5.81}{5.47}$	$\frac{4.99}{4.70}$	5.05 4.73 4.45	0.13 0.12
18 19 —		$\frac{7.68}{7.27}$	$\frac{7.28}{6.90}$	6.08 5.76	$\frac{5.55}{5.26}$		5.75			$\frac{4.21}{3.98}$	
20 21 22 23 24	7.26 6.92 6.60 6.31 6.05	6.91 6.58 6.28 6.01 5.76	6.56 6.24 5.96 5.70 5.46	5.47 5.21 4.97 4.76 4.56	5.00 4.76 4.54 4.35 4.16	$\begin{array}{c} 0.11 \\ 0.11 \end{array}$	5.17 4.93 4.70 4.50 4.31	4.43 4.23 4.04	$3.80 \\ 3.63 \\ 3.47$	3.79 3.60 3.44 3.29 3.15	$ \begin{array}{c} 0.10 \\ 0.09 \\ 0.09 \end{array} $
25 26 27 28 29 30	5.59 5.38 5.19 5.01	4.93 4.76	5.24 5.04 4.86 4.68 4.52 4.37	3.91	3.84 3.70 3.57 3.45	0.09 0.09 0.09 0.08 0.08 0.08	4.14 3.98 3.83 3.69 3.57 3.45	3.58 3.44 3.32 3.21	3.07 2.96 2.85 2.75	3.03 2.91 2.80 2.70 2.61 2.52	0.08 0.08 0.07 0.07
		Def	lection .001	Coeffici 1839		D	eflectio	n Coe		t	

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL **T** BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.		7	′ I		. Lb.		6"	I		Lb.
Span, in I	22 Lbs. per Foot.	20 Lbs. per Foot.	17½ Lbs. per Foot.	15 Lbs. per Foot.	Add for ea. Inc. in Weig	20 Lbs. per Foot.	17½ Lbs. per Foot.	15 Lbs. per Foot.	12 Lbs. per Foot.	Add for ea. Lb. Inc. in Weight.
6	15.2 12.7	14.5 12.1	12.2 10.2	11.3 9.43	$\begin{bmatrix} 0.37 \\ 0.31 \end{bmatrix}$	9.15	8.49	9.40 7.85	6.45	0.26
7 8 9	$ \begin{array}{r} 10.9 \\ 9.53 \\ 8.47 \end{array} $	10.4 9.07 8.06	8.73 7.64 6.79	8.08 7.07 6.28	$0.26 \\ 0.23 \\ 0.20$	$\begin{bmatrix} 7.84 \\ 6.86 \\ 6.10 \end{bmatrix}$	6.37	$6.72 \\ 5.88 \\ 5.23$	4.84	0.20
10 11	7.62 6.93	7.26 6.60	6.11 5.56	5.66 5.14	$0.18 \\ 0.17$	5.49 4.99	5.09	$\frac{-}{4.70}$ $\frac{4.70}{4.27}$	3.8 7	0.16
12 13	6.35	6.05 5.58	5.09	4.71	0.15	$\frac{4.57}{4.22}$	4.24	$\frac{3.92}{3.62}$	3.22	0.13
14 - 15	5.44	5.18 4.84	4.37	3.77	$0.13 \\ \hline 0.12$	$\frac{3.92}{3.66}$		$\frac{3.36}{3.13}$		
16 17 18	4.76 4.48 4.23	4.53 4.27 4.03	3.82 3.60 3.40	3.53 3.33 3.14	$0.11 \\ 0.11 \\ 0.10$	3.43 3.23 3.05	3.00	$2.94 \\ 2.76 \\ 2.61$	2.27	0.09
19	4.23 4.01 3.81	$\frac{3.82}{3.63}$	$\frac{3.40}{3.22}$	2.98 2.83	0.10 0.10 0.09	$ \begin{array}{c c} 3.03 \\ 2.89 \\ \hline 2.74 \end{array} $	2.68	2.47 2.35	2.04	0.08
20 21 22	3.63 3.46	3.45 3.30	2.91 2.78	2.69 2.57	0.09	2.61 2.49	2.43 2.32	2.24 2.14	1.84 1.76	0.08 0.07
23 24 25	3.31 3.18 3.05	3.15 3.02 2.90	2.66 2.55 2.45	2.46 2.36 2.26	$\begin{vmatrix} 0.08 \\ 0.08 \\ 0.07 \end{vmatrix}$	2.39 2.29 2.20	2.12	$2.04 \\ 1.96 \\ 1.88$	1.61	0.07
_			on Coeffi 002365	icient,		D	eflection	Coef		,

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

IN TONS OF 2000 LBS.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Feet.		5	' I		. Lb. ight.		4	'I		or ea. Lb. Weight.
Span, in F	15 Lbs. per Foot.	Lbs. per Foot.	Lbs. per Foot.	$ \begin{array}{c} \Omega_{\frac{3}{4}}^{3} \\ \text{Lbs.} \\ \text{per} \\ \text{Foot.} \end{array} $	Add for ea. Lb. Inc. in Weight.	10 Lbs. per Foot.	8 Lbs. per Foot.	7½ Lbs. per Foot.	6 Lbs. per Foot.	Add for ea. I Inc. in Weig
5 6 7 8	7.21 6.01 5.15 4.51	6.70 5.58 4.78 4.19	5.79 4.82 4.13 3.62	5.20 4.32 3.71 3.25	0.26 0.22 0.19 0.16	3.65 3.05 2.61 2.28	3.23 2.69 2.30 2.02	3.12 2.60 2.23 1.95	2.45 2.04 1.75 1.53	0.21 0.18 0.15 0.13
9	4.01	3.72	3.22	2.88	0.15	2.03	1.79	1.74	1.36	0.12
10 11 12 13 14	$ \begin{array}{r} 3.61 \\ \hline 3.28 \\ 3.01 \\ 2.78 \\ 2.58 \end{array} $	3.35 3.04 2.79 2.58 2.37	2.89 2.63 2.41 2.23 2.07	2.36 2.36 2.16 2.00 1.86	$ \begin{array}{c c} 0.13 \\ \hline 0.12 \\ 0.11 \\ 0.10 \\ 0.09 \end{array} $	1.83 1.66 1.52 1.40 1.30	1.61 1.47 1.34 1.24 1.15	1.56 1.42 1.30 1.20 1.11	1.23 1.11 1.02 0.95 0.88	0.11 0.10 0.09 0.08 0.08
15 16 17 18 19	2.40 2.25 2.12 2.00 1.90	2.23 2.09 1.97 1.86 1.76	1.93 1.81 1.70 1.61 1.52	1.73 1.62 1.53 1.44 1.36	0.09 0.08 0.08 0.07 0.07	1.22 1.14 1.07 1.01 0.97	1.08 1.01 0.95 0.90 0.85	1.04 0.98 0.92 0.87 0.82	0.82 0.77 0.72 0.68 0.65	0.07 0.07 0.06 0.06 0.06
20 21 22 23 24 25	1.80 1.72 1.64 1.57 1.50 1.44	1.67 1.59 1.52 1.45 1.39 1.34	1.45 1.38 1.32 1.26 1.21 1.16	1.30 1.24 1.19 1.13 1.09 1.04	0.07 0.06 0.06 0.06 0.05 0.05	0.92 0.87 0.83 0.80 0.76 0.73	0.81 0.77 0.73 0.70 0.67 0.65	0.78 0.74 0.71 0.68 0.65 0.62	0.61 0.58 0.56 0.53 0.51 0.49	0.05 0.05 0.05 0.05 0.04 0.04
			ion Coe	0	ht of he			.00413	efficient 8	

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs.,

CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

Span, in Feet.	15" 40 Lbs. per Ft.	15" 33 Lbs. per Ft.	Add to Safe Loadfor eachlb. per ft. increase in weight of Channel.	12" 27 Lbs. per Ft.	12" 20 Lbs. per Ft.	Add to Safe Loadforeachlb. per ft. increase in weight of Channel.
6	40.6	36.0 30.8 27.0 24.0	0.65	23.85	18.48	0.52
7	34.8		0.56	20.44	15.84	0.44
8	30.5		0.49	17.89	13.86	0.39
9	27.1		0.43	15.90	12.32	0.35
10	24.4	21.6	0.39	14.31	11.09	$egin{array}{c} 0.31 \\ 0.29 \\ 0.26 \\ 0.24 \\ 0.22 \\ \end{array}$
11	22.2	19.6	0.36	13.01	10.08	
12	20.3	18.0	0.33	11.93	9.24	
13	18.7	16.6	0.30	11.01	8.53	
14	17.4	15.4	0.28	10.22	7.92	
15	16.2	14.4	$\begin{array}{c} 0.26 \\ 0.25 \\ 0.23 \\ 0.22 \\ 0.21 \end{array}$	9.54	7.39	0.21
16	15.2	13.5		8.94	6.93	0.20
17	14.3	12.7		8.42	6.52	0.18
18	13.5	12.0		7.95	6.16	0.17
19	12.8	11.4		7.53	5.83	0.17
20	12.2	10.8	0.20	7.16	5.54	0.16
21	11.6	10.3	0.19	6.81	5.28	0.15
22	11.1	9.81	0.18	6.50	5.04	0.14
23	10.6	9.40	0.17	6.22	4.82	0.14
24	10.2	9.01	0.16	5.96	4.62	0.13
25	9.75	8.65	0.16	5.72	4.43	0.13
26	9.37	8.32	0.15	5.50	4.26	0.12
27	9.02	8.01	0.15	5.30	4.11	0.12
28	8.70	7.72	0.14	5.11	3.96	0.11
29	8.40	7.46	0.14	4.93	3.82	0.11
30 31 32 33 34 35	7.86 7.61 7.38 7.17 6.96	7.22 6.98 6.76 6.55 6.36 6.18	0.13 0.13 0.13 0.12 0.11 0.11	4.77 4.62 4.47 4.34 4.21 4.09	3.70 3.58 3.46 3.36 3.26 3.17	0.10 0.10 0.10 0.10 0.09 0.09
	Defl	ection Coef .001103		Def	ection Coef	ficient,

PASSAIC STEEL CHANNELS,

In tons of 2000 lbs.,

CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

Span, in Feet.	10" 20 lbs. per Ft.	10" 15 lbs. per Ft.	Add to Safe Load for each lb. per ft. inc. in weight of Channel.	9" 16 lbs. per Ft.	9" 13 lbs. per Ft.	Add to Safe Load for each lb. per ft. inc. in weight of Channel.	8" 13 lbs. per Ft.	8" 10 lbs. per Ft.	Add to Safe Load for each lb. per ft. inc. in weight of Channel.	
5 6 7 8 9	18.2 15.2 13.0 11.4 10.1	14.3 11.9 10.2 8.91 7.92	0.52 0.44 0.38 0.33 0.29	13.5 11.3 9.67 8.46 7.52	10.8 8.98 7.69 6.73 5.98	0.48 0.40 0.34 0.29 0.26	9.48 7.90 6.77 5.92 5.27	7.52 6.27 5.37 4.70 4.18	0.42 0.34 0.30 0.26 0.23	
10 11 12 13 14	9.12 8.29 7.60 7.02 6.52	7.13 6.48 5.94 5.48 5.09	0.26 0.24 0.22 0.20 0.19	6.76 6.15 5.64 5.20 4.83	5.38 4.90 4.49 4.14 3.85	0.24 0.21 0.20 0.18 0.17	4.74 4.31 3.95 3.65 3.39	3.76 3.42 3.14 2.89 2.69	$\begin{array}{c} 0.21 \\ 0.19 \\ 0.17 \\ 0.16 \\ 0.15 \end{array}$	
15 16 17 18	6.08 5.70 5.37 5.07	4.75 4.46 4.19 3.95	$ \begin{array}{c} 0.17 \\ 0.16 \\ 0.15 \\ 0.15 \end{array} $	4.51 4.23 3.98 3.76	3.59 3.37 3.17 2.99	$ \begin{array}{c} 0.16 \\ 0.15 \\ 0.14 \\ 0.13 \end{array} $	$ \begin{array}{r} 3.16 \\ 2.96 \\ \hline 2.79 \\ 2.64 \\ \end{array} $	2.51 2.35 2.21 2.09	$ \begin{array}{c c} \hline 0.14 \\ 0.13 \\ 0.12 \\ 0.12 \end{array} $	
	4.80 4.56 4.34	$ \begin{array}{r} 3.75 \\ \hline 3.56 \\ \hline 3.40 \end{array} $	$ \begin{array}{c c} 0.14 \\ \hline 0.13 \\ 0.12 \end{array} $	3.56 3.38 3.22	2.83 2.69 2.56	$ \begin{array}{c c} 0.13 \\ \hline 0.12 \\ \hline 0.12 \\ 0.11 \end{array} $	$ \begin{array}{r} 2.50 \\ \hline 2.37 \\ 2.26 \end{array} $	$ \begin{array}{r} 1.98 \\ \hline 1.88 \\ 1.79 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
22 23 24 25	$ \begin{array}{r} 4.14 \\ 3.96 \\ 3.80 \\ \hline 3.65 \end{array} $	$ \begin{array}{r} 3.24 \\ 3.10 \\ 2.96 \\ \hline 2.85 \end{array} $	$ \begin{array}{c} 0.12 \\ 0.11 \\ 0.11 \\ \hline 0.10 \end{array} $	$ \begin{array}{r} 3.08 \\ 2.94 \\ 2.82 \\ \hline 2.71 \end{array} $	$ \begin{array}{r} 2.45 \\ 2.34 \\ 2.24 \\ \hline 2.15 \end{array} $	$0.11 \\ 0.10 \\ 0.10$	2.16 2.06 1.97	1.71 1.63 1.56	0.09 0.09 0.09	
26 27 28 29 30	3.51 3.38 3.26 3.15 3.04	2.63 2.74 2.64 2.54 2.45 2.38	0.10 0.10 0.10 0.09 0.09 0.09	2.60 2.50 2.41 2.33	2.07 2.00 1.93 1.86	0.09 0.09 0.09 0.08 0.08	$egin{array}{c c} 1.90 \\ 1.83 \\ 1.76 \\ 1.69 \\ 1.63 \\ 1.58 \\ \hline \end{array}$	1.50 1.44 1.39 1.34 1.30 1.26	$ \begin{array}{c} 0.08 \\ 0.08 \\ 0.08 \\ 0.07 \\ 0.07 \\ 0.07 \\ \end{array} $	
•,00	Deflection Coefficient, .001655						Deflection Coefficient, .002069			

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs.,

CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

Span, in Feet.	7" 13 Lbs. per Ft.	7// 9 Lbs. per Ft.	Add to Safe Loadforeach lb. per ft. increase in weight of Channel.	6" 17Lbs. per Ft.	6" 12 Lbs. per Ft.	6" 8 Lbs. per Ft.	Add to Safe Loadforeachlb, per ft. increase in weight of Channel.
5	8.33	5.79	0.37	9.05	6.64	4.54	0.31
6	6.94	4.83	0.32	7.53	5.53	3.78	0.26
7	5.95	4.13	0.26	6.46	4.74	3.24	0.22
8	5.21	3.62	0.23	5.64	4.15	2.84	0.20
9	4.63	3.22	0.20	5.02	3.69	2.52	0.17
10	4.17	2.90	0.18	4.52	3.32	2.27	0.16
11	3.79	2.62	0.17	4.10	3.02	2.06	0.14
12	3.47	2.41	0.15	3.76	2.77	1.89	0.13
13	3.20	2.22	0.14	3.48	2.55	1.74	0.12
14	2.98	2.06	0.13	3.23	2.35	1.62	0.11
15	2.78	1.93	0.12	3.01	2.21	1.51	0.10
16	2.60	1.81	0.11	2.82	2.07	1.42	0.10
17	2.45	1.70	0.11	2.66	1.95	1.33	0.09
18	2.32	1.61	0.10	2.51	1.84	1.26	0.09
19	2.19	1.52	0.10	2.38	1.75	1.19	0.09
20	2.08	1.45	0.09	2.26	1.66	1.13	0.08
21	1.97	1.38	0.09	2.15	1.58	1.08	0.07
22	1.89	1.32	0.08	2.05	1.51	1.03	0.07
23	1.82	1.26	0.08	1.96	1.44	.99	0.07
24	1.74	1.20	0.08	1.88	1.38	.95	0.07
25	1.67	1.16	0.07	1.81	1.33	.91	0.06
	Defl	ection C	oefficient,		Deflectio	n Coeffic 002760	cient,

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs.,

CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

Span, in Feet.	5" 9 Lbs. per Ft.	5" 6 Lbs. per Ft.	Add to Safe Loadforeachlb. per ft. increase in weight of Channel.	4" 8 Lbs. per Ft.	4" 5 Lbs. per Ft.	Add to Safe Loadforeachlb. per ft. increase in weight of Channel.	
5	4.12	2.78	0.26	2.91	$ \begin{array}{r} 1.92 \\ 1.60 \\ 1.37 \\ 1.20 \\ \hline 1.07 \end{array} $	0.21	
6	3.43	2.32	0.22	2.42		0.18	
7	2.94	1.99	0.19	2.08		0.15	
8	2.58	1.74	0.17	1.82		0.13	
9	2.29	1.54	0.15	1.62		0.12	
10	2.06	1.39	0.13	1.46	.96	0.11	
11	1.87	1.26	0.12	1.32	.87	0.10	
12	1.71	1.16	0.11	1.21	.80	0.09	
13	1.58	1.07	0.10	1.12	.74	0.08	
14	1.47	.99	0.09	1.04	.69	0.08	
15	1.37	.93	0.09	.97	.64	0.07	
16	1.29	.87	0.08	.91	.60	0.07	
17	1.21	.82	0.08	.86	.56	0.06	
18	1.14	.77	0.07	.81	.53	0.06	
19	1.08	.73	0.07	.77	.50	0.06	
20 21 22 23 24 25	1.03 .98 .94 .90 .86 .82	.70 .66 .63 .60 .58	0.07 0.06 0.06 0.06 0.06 0.06 0.05	.73 .69 .66 .63 .61	.48 .45 .44 .42 .40	0.05 0.05 0.05 0.05 0.04 0.04	
	Defi	lection Coe	fficient,	Deflection Coefficient,			

MAXIMUM SAFE SHEAR FOR PASSAIC STEEL **I** BEAMS,

AND CORRESPONDING MINIMUM SPANS FOR GREATEST SAFE UNIFORMLY DISTRIBUTED LOADS.

Depth of Beam, Ins.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	Mini- mum Span, Feet.	Depth of Beam, Ins.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	Mini- mum Span, Feet.
20	90	133,000	6.0	10	30	40,000	3.6
"	85	128,000	5.8	//	27	31,200	4.4
//	80	113,000	6.3	//	25	24,500	5.3
!/	75	106,000	6.3	9	33	42,800	3.4
//	70	85,600	7.5	9	30	33,200	4.2
"	65	69,800	8.8	"	27	23,300	5.6
18	80	108,000	6.2	"	25	32,000	3.4
//	75	92,000	7.0	"	$23\frac{1}{3}$	27,000	3.9
//	70	97,500	5.9	"	$\frac{21}{21}$	19,100	5.2
//	65	95,000	5.5				
//	60	77,000	6.5	8	27	36,200	2.9
//	55	61,000	7.8	//	25	29,200	3.4
15	75	112,000	4.6	//	22 20	$19,600 \\ 22,200$	$\frac{4.7}{3.6}$
//	70	97,800	5.0	11	18	16,000	4.7
//	65	81,400	5.8			10,000	4.7
//	60	64,900	7.0	7	22	23,200	3.3
//	55	69,400	5.7	//	20	17,200	4.2
"	50	52,600	7.2	"	$17\frac{1}{2}$	21,600	2.8
"	45	53,600	5.9	//	15	13,200	4.3
//	42	43,500	7.0	6	20	29,100	1.9
12	65	101,000	3.5	"	171	21,000	2.4
"	60	85,200	3.9	"	15	13,300	3.5
11	55	69,800	4.6	"	12	11,200	3.5
//	50	70,800	4.0		15	19.400	9.0
"	45	54,000	4.9	5	13	18,400 12,100	$\begin{bmatrix} 2.0 \\ 2.8 \end{bmatrix}$
"	40	38,100	6.6	//	12	16,200	1.8
//	35	44,300	4.7	"	$9\frac{3}{4}$	9,300	$\frac{1.6}{2.8}$
//	$\frac{31\frac{1}{2}}{}$	32,200	$\frac{6.1}{}$	l ———			
10	40	54,200	3.5	4	10	15,200	1.2
"	35	38,200	4.6	//	712	7,400	2.1
"	33	31,700	5.4	//	6	6,500	1.9

Beams and channels on short spans fully loaded are liable to fail by crippling of the web. The maximum safe shear is obtained from the following formula:

10000 dt

Maximum Safe Shear = $\frac{10000 \, at}{1 + \frac{h^2}{3000 \, t^2}}$

where d = depth of beam, t = thickness of web and h = clear distance between flanges, all dimensions in inches.

MAXIMUM SAFE SHEAR FOR PASSAIC STEEL CHANNELS,

AND CORRESPONDING MINIMUM SPANS
FOR GREATEST SAFE UNIFORMLY DISTRIBUTED LOADS.

Depth of Chan- nel, Ins.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	Mini- mum Span, Feet.	Depth of Chan- nel, Ins.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	Mini- mum Span, Feet.
15	50	98,600	2.9	8	12	17,600	2.4
//	45	83,800	3.1	"	11	15,000	2.6
//	40	67,200	3.6	//	10	11,400	3.3
://	35	50,700	4.4	ļ			
//	33	43,800	4.9	7	17	29,900	1.5
				//	15	23,200	2.0
12	35	63,000	2.7	,,	$\tilde{13}$	17,200	2.4
//	33	56,400	2.9	//	12	20,700	1.7
//	30	45,800	3.3	//	10	13,800	2.2
//	27	36,600	3.9	//	9	10,700	2.7
//	25	38,900	3.3				
//	23	32,200	3.7	6	20	31,100	1.6
//	20	22,700	4.9	//	18	25,000	1.9
				//	17	21,800	2.1
10	30	56,300	2.1	//	15	24,800	1.5
//	25	41,300	2.5	"	13	18,500	1.9
//	20	24,800	3.7	//	12	15,300	2.2
//	18	25,500	3.1	//	10	16,400	1.6
1/	17	22,200	3.4	//	9	13,200	1.8
"	15	17,700	4.0	//	8	9,900	2.3
9	21	36,900	2.2	5	12	20,800	1.2
//	18	27,100	2.7	",,	10	14,700	1.5
"	16	20,300	3.3		9	11,600	1.8
"	15	22,000	2.7	//	8	14,100	1.2
11	14	18,000	3.1	"	6	7,600	1.8
. //	13	14,900	3.6				
				4	10	16,500	1.0
8	17	29,300	1.9	//	8	10,400	1.4
"	15	22,300	2.3	//	6	9,000	1.2
"	13	16,10 0	2.9	//	5	6,100	1.6
-					·		'

The maximum safe uniformly distributed load on beams or channels for any span less than the minimum span given must not exceed twice the safe shear. The maximum safe load concentrated at the center of a span must also not exceed twice the safe shear given, and the corresponding limiting span will be one half the minimum span given in the tables. Heavy loads concentrated at the ends of beams must not produce a shear or reaction exceeding the safe allowable shear as given.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL T SHAPES, EQUAL LEGS,

In tons of 2000 lbs., Tees having stem vertical and being secured against yielding sidew:

	Deflec-	tion Coeff.	0000		1	.0033	0000	.0040	.0039	.0039	0048	.0047	0000	.0059	0068	2900.	0077	.0078	0002	.0116	
		14 15	3 0 77 0 79	80.630.58	30 580 55	10.470.44	20 49 0 30	10.380.36	0.330.31	10.280.27		20 0.19							e right of the	effections ex-	span, in feet.
the coursest accounted and being secured against yielding sideways.		11 12 13	1.20 1.08 0.980.90 0.83 0 77 0 79	79 0.73 0.68 0.63	4.092.73 2.05 1.64 1.36 1.17 1.02 0.91 0.820.74 0.68 0.63 0.58 0.58	1.09 0.94 0.82 0.73 0.66 0.60 0.55 0.51 0.47 0.44	53 0 49 0 45 0 49 0 30	0.900.77 0.670.60 0.54 0.49 0.45 0.41 0.38 0.36	[0.51 0.46 0.42 0.38 0.35 0.33 0.31	57 0.50 0.44 0.40 0.36 0.33 0.31 0.28 0.	66 0 86 0 86 0 68	24 0.22 0 2	0.15	12 0.11					The loads given to the right of the	zigzag line produce deflections ex-	Safe loads include weight of Tees. Maximum fiber strain of 16,000 lbs. per square inch. Deflection of Tees, in inches, under tabular loads is equal to the product of the Deflection Coefficient by the square of the span, in feet.
inst yieldir	in Feet.	10	01.080	2.19 1.75 1.46 1.25 1.09 0.97 0.88 0.79	10.820	30.660.	1.17 0.98 0.84 0.73 0.65 0.59 0	00.540	10.460.	4 0.40 0.	1.05 0.78 0.63 0.52 0.45 0.39 0.35 0.31 0.29	0.30 0.27 0.24	0.19 0.17 0.16 0.15	.150.130.120.1	0.120.10	0.080.07		3	The le	zigzag ceeding	icient by th
cured agai	Distances between Supports, in Feet.	8	.35 1.2	0.090.9	0.0 0.0	7.0 28.	.730.6	6710.6	.570.5	.500.4	.39 0.3	.33 0.3			0	0.0 00.0	0.10 0.09	0.07 0.06	0.20		nch. ction Coeff
as Sun	tween	~	5.38 3.59 2.69 2.15 1.79 1.54 1.35	1.25 1	1.171	0.94 0	0.84	0.77.0	0.760.660.57		0.4510	0.67 0.53 0.44 0.38 0.33	0 25 0 . 22	0.22 0.19 0.17	0.17 0.15 0.13	0.370.250.190.150.120.110.09	0.11	0.080.0	0.19 0.13 0.10 0.08 0.06 0.06 0.05		quare in
and D	nces be	9	1.79	1.46	1.36	1.09	0.98	0.00	0.76	0.99 0.79 0.66 0	0.52	0.44	0.44 0.35 0.29 0		0.17	0.12	0.190.150.130.11	0.10 0.08	0.00	0.03	s. per s uct of th
verillea	Dista	20	2.15	1.75	1.64	1.31	1.17	.34 1.08	0.92	0.79	0.63	0.53	0.35	0.33 0.27	0.26 0.21	0.15	0.15	0.14 0.11	0.08	0.04	16,000 lb
Stelli.		4	9.2	2.19	3.05	1.64	1.47	\vdash	1.150	0.99	0.78	0.67	0.44	0.33	0.26	0.19	0.19	0.14	01.0	0.04	rain of ual to t
naving		က	83.56	4.38 2.92	92.7	3.282.191.641.31	31.96	69 1.79	91.53	1.991.32	711.05	1.330.89	0.87 0.58	67 0.45	0.520.34	70.25	0.390.96	90.19	0.13	0.09 0.06 0.04 0.04 0.03	fiber st ids is eq
, 1003		<i>∞</i>					2.93				1.57		0	0		-	1	0.20	1	0.0	aximum ular loa
2000 103		н	10.76	8.75	8.19	6.56	5.87	5.38	4.59	3.97	3.14	2.66	1.74	1.34	$\frac{1.03}{1.03}$	0.74	0.77	0.57	0.39	0 18	Tees. Ma under tab
10 101 11	Weight	Foot, Pounds.	13.6	10.4	11.7	0.3	10.0	9.1	% €:	9.9	6.4	ಸು ಸು	4.3	3.7	3.T	2.25	2.55	1.85	1.55	0.00	weight of in inches,
	Thick-	Inches.	- 33	m x	-454	esix.	4 2	10	n ∞ ∞ m	10	es[∞	1-6	16	, -1,4,	-14	1.6	4	10	13	~\x	ls include in of Tees,
	Size of	Inches, Flange by Stem.	×	4 × 4	×	3½ X 3½		ന (X . ന (×:	3 × 3	×	$2\frac{1}{2} \times 2\frac{1}{2}$	×	×.		14 × 14		14 × 14	14 × 14	1 × 1	Safe load Deffectio

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL T SHAPES, UNEQUAL LEGS,

In tons of 2000 lbs., Tecs having stem vertical and being secured against yielding sideways.

Deffec.	tion Coeff.	.0037	.0036	.0038	.0037	•	.0038	.0040	.0040	.0044	.0043	.0046	.0046	.0055	.0057	.0075	.0080
	15	0.42	0.350.33	430.41	0.35	0.41	0.31	.320.30	0.26					rioht	e de-	3 g of the	
	14	0.45		0	0.340.	0.44	0.34		0.28					to the	produc	3 3 30 0	
	13	0.490	0.38	0.47	0.37	0.47	0.36	\sim	0.30					oiven	z line	ceding	
	12	0.53	0.41	0.51	0.40	0.51	0.39	0.37	0.33	0.36	0.28	0.28	0.23	The loads given to the naht	of the zigzag line produce de-	flections exceeding	
	11	0.57	0.45	610.55	0.44	0.56	0.43	0.41	0.35	0.39	0.31	0.30	0.22	T	of the	flectic	span.
Feet.	10	0.63	0.490	0.61	0.480.	0.61	0.47	0.450.41	0.39	8 0.43	0.340.31	0.330.	0.28	0.21	0.21		
orts, in	0	0.70	0.55(0.6510.0	0.53	0.680.61	0.52	.56 0.50	0.43	0.48	0.38	0.37	0.31	0.24	0.33		
Suppo	ø	0.79	0.61	0.76	09.0	0.77	0.59	0.56	0.48	0.54	0.43	0.42	0.35	0.27	0.50	0.14	
Distance between Supports, in Feet.	2	0.30	0.70	0.87	69.	.88	0.67	0.64	0.55	0.62	0.49	0.48	0.39		0.29	0.17	
nce be	9	12	.82	1.02 (.80	. 02	0.79	0.75	0.64[0	2	22	0.56	46	0.43 0.35 0.30	0.34	. 19	01.0
Dista	5	.261	0.980.0	1.221	0.96[0	.23	0.940	0.90	.77(.870.	0.680.0	0.67	0.550.	.43	0.41	.23(.120.
	4	1.581	1.236	1.521	.20	1.531	.18	1.12	.97	60:	.85	.83	0.69	53	51	.29	141
	က	111.	1.641	2.031	.601	.04	1.571	.491	1.290	.451.0	1.140	.110	0.920	060.710	0.680	0.38 0.29 0.23 0.	0.100
	टर	3.162	2.451	3.042	2.401	3.072	2.361	2.24	1.931	2.171	1.71	1.671	1.38	1.06	1.03(0.58	0.200
	-	6.32)1	6.08	4.80 5	6.13	4.71 5	4.48	3.87	4.34	3.42	3.33	2.76	2.12	2.05 1	1.15	
tht	oot,	<u> </u> 			~					<u> </u>		1			4		
Weigh	per Foot, Pounds.	14.0	11.0	11.7	g. 00	10.8	လ က	7.1	6.1	13.1	10.3	7.	6.1	7.8	6.4	70	3.1
Thick-	ness, Inches.		හ ග	~ ·	eo ∞	-10	eo ∞	estro	15	400	භ න 	es x	15	65/20	es/50	e5(x	-14
Size of T,	Flange by Stem, Inches.	s x	تر × 3	X	4 × 3	3½ × 3	3½ × 3	$2\frac{1}{2} \times 3$	X	5 × 2½	5 × 2½	3 × % ×		4 × 2	×		24×14

Deflection of Tees, in inches, under tabular loads is equal to the product of the Deflection Coefficient by the square of the span, in feet. Safe loads given include weight of Tees. Maximum fiber strain of 16,000 lbs. per square inch.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL ANGLES,

EQUAL LEGS, IN TONS OF 2,000 LBS.,

Angles being secured against yielding sideways.

Size of Angle, Inches.	Thickness, Ins.	Coefficient of strength, in tons.				Span i	n feet.				Deflection Coefficient.
Size o Inc	Thickn	Coeffi	2	3	4	5	6	8	10	12	Defle
6 ×6 6 ×6	7 8 3 ×	$\frac{43.6}{18.8}$		6.25	4.69	3.75	3.13	2.34	1.88	1.56	.0020 .0019
5 ×5 5 ×5	3438	$\begin{array}{c} 25.5 \\ 12.9 \end{array}$	$\begin{array}{c} 12.8 \\ 6.45 \end{array}$			2.58	2.15	$\frac{3.19}{1.61}$	1.29	1.08	
4 ×4 4 ×4	$\frac{13}{16}$ $\frac{5}{16}$	$\begin{array}{c} 17.7 \\ 6.90 \end{array}$	3.45	2.30	1.73	3.54 1.38	1.15	.86	1.77 .69	.58	.0031
$3\frac{1}{2} \times 3\frac{1}{2} \\ 3\frac{1}{2} \times 3\frac{1}{2}$	$\begin{array}{c} \frac{5}{8} \\ \frac{5}{16} \end{array}$	$\begin{array}{c} 9.65 \\ 5.20 \end{array}$	$\frac{4.83}{2.60}$	1.73	1.30	1.04	1.61 .87	.65	.97 .52	.80 .43	.0035
3 ×3 3 ×3	5 1 4	7.90 3.10	$3.95 \\ 1.55$	1.03	1.99 .77	$\frac{1.58}{.62}$	$\frac{1.32}{.52}$.99	.79 .31	.66 .26	.0042
$2\frac{1}{2} \times 2\frac{1}{2}$ $2\frac{1}{2} \times 2\frac{1}{2}$	1/2 1/4	4.08 2.14	$\frac{2.04}{1.07}$	$\frac{1.36}{.71}$	$\begin{array}{c} 1.02 \\ .54 \end{array}$.82	.68 .36	.51	.41	.34 .18	.0049
$\begin{array}{ c c }\hline 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 2\frac{1}{4} \\ \end{array}$	$\frac{\frac{1}{2}}{\frac{3}{16}}$	$\begin{bmatrix} 3.47 \\ 1.30 \end{bmatrix}$	1.74 .65	$\begin{matrix} 1.16 \\ .43 \end{matrix}$.87	.69 .26	.58 .22	.43	.35 .13	.29 .11	.0056 .0051
2×2 2×2	$\frac{\frac{1}{2}}{\frac{3}{16}}$	$\begin{bmatrix} 2.72 \\ 1.02 \end{bmatrix}$	1.36 .51	.91 .34	.68 .25	.54	.45	.34 .13	.27		.0065
$1\frac{3}{4} \times 1\frac{3}{4}$ $1\frac{3}{4} \times 1\frac{3}{4}$	$\begin{array}{c} 7\\16\\3\\\overline{16}\end{array}$	1.73 .75	.86 .37	.57	.43 .19	.35 .15	.29 .12	.22	.17		.0073 .0067
$1\frac{1}{2} \times 1\frac{1}{2} \\ 1\frac{1}{2} \times 1\frac{1}{2}$	$\begin{array}{c} \frac{3}{8} \\ \frac{3}{16} \end{array}$	1.00 .56	.50 .28	.33	.25	.20	.17	.13	.10		.0084
$\frac{1\frac{1}{4} \times 1\frac{1}{4}}{1\frac{1}{4} \times 1\frac{1}{4}}$	5 16 1 8	.69 .26	.34	.23 .09	.17	.14	.11	.09	.07		.0105
$\begin{array}{c} 1 \times 1 \\ 1 \times 1 \end{array}$	1 4 1 8	.34	.17	.11	.08	.07	.06	.04			.0129
78 X 78 78 X 78 34 X 34 34 X 34	$\frac{3}{16}$.18	.09	.06	.04	.04	.03				.0141
$\begin{array}{ c c c }\hline\hline \frac{3}{4} \times \frac{3}{4} \\ \frac{3}{4} \times \frac{3}{4} \\ \hline \end{array}$	$\frac{3}{16}$ $\frac{1}{8}$.13	.06	.04	.03	.03					.0169

Safe loads given include weight of angle. Maximum fiber strain, 16,000

lbs. per sq. in.

Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.

Loads given to the right of the zigzag line produce deflections exceeding $\frac{1}{360}$ of the span. Deflections, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in fact. in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL ANGLES,

UNEQUAL LEGS, IN TONS OF 2,000 LBS.

Long Leg Vertical.

Angles being secured against yielding sideways.

Size of Angle, Inches.	Thickness, Ins.	fficient of ingth, in tons.			S	Span ii	n feet.				Deflection Coefficient.
Size of Inc	Thickn	Coefficient of strength, in tons.	2	3	4	5	6	8	10	12	Defi
6 ×4 6 ×4	7 8 3 8	$\frac{42.1}{17.7}$	$21.0 \\ 8.85$	$\frac{14.0}{5.90}$	$10.5 \\ \underline{4.43}$	$\frac{8.41}{3.54}$	$7.01 \\ 2.95$	$\frac{5.26}{2.21}$	$\frac{4.21}{1.77}$	$3.50 \\ \underline{1.48}$.0022
$5 \times 3\frac{1}{2}$ $5 \times 3\frac{1}{2}$ 5×3 5×3	34383456	24.2 12.2 24.3 10.1	12.1	$\begin{array}{c} 4.07 \\ 8.08 \end{array}$	$\begin{array}{c} 3.05 \\ 6.06 \end{array}$	$\frac{2.44}{4.85}$	4.03 2.03 4.04 1.68	$\substack{1.53\\3.03}$	$\frac{1.22}{2.43}$	$2.01 \\ 1.02 \\ 2.02 \\ .84$	
$\frac{\frac{3}{4\frac{1}{2}\times3}}{\frac{4\frac{1}{2}\times3}{4\frac{1}{2}\times3}}$	$\frac{\frac{3}{4}}{\frac{5}{16}}$	19.1 8.2	$9.55 \\ 4.10$	$\overline{\overset{6.37}{2.73}}$	$\overline{\overset{4.78}{2.05}}$	$\overline{3.82}$ 1.64	$\frac{3.18}{1.37}$	$\overline{2.39} \\ 1.03$	$\frac{1.91}{.82}$	$\frac{1.59}{.68}$.0029
$\begin{array}{ccccc} 4 & \times 3\frac{1}{2} \\ 4 & \times 3\frac{1}{2} \\ 4 & \times 3 \\ 4 & \times 3 \end{array}$	$\begin{array}{c c} 3\\ 4\\ 5\\ 16\\ 5\\ 8\\ 5\\ 16 \end{array}$	15.7 6.6 12.3 6.55	$\begin{bmatrix} 3.30 \\ 6.15 \end{bmatrix}$	$\frac{2.20}{4.10}$	1.65	$\frac{1.32}{2.46}$	$\frac{1.10}{2.05}$	1.96 .83 1.54 .82	.66	1.03	.0031 .0029 .0032 .0030
$\begin{array}{c} 3\frac{1}{2} \times 3 \\ 3\frac{1}{2} \times 3 \\ 3\frac{1}{2} \times 2\frac{1}{2} \\ 3\frac{1}{2} \times 2\frac{1}{2} \end{array}$	5 5 16 9 16 14	9.38 5.11 8.64 4.00	$2.56 \\ 4.32$	$\frac{1.70}{2.88}$	$egin{array}{c} 2.34 \\ 1.28 \\ 2.16 \\ 1.00 \\ \end{array}$	$\frac{1.02}{1.73}$	$\frac{.85}{1.44}$.64	.86	.43 .72	.0036 .0034 .0037 .0035
$\begin{array}{ c c c c c }\hline 3 & \times 2^{\frac{1}{2}} \\ 3 & \times 2^{\frac{1}{2}} \\ 3 & \times 2 \\ 3 & \times 2 \\ \end{array}$	9 16 14 12 14	6.45 2.99 5.34 2.88	1.49 2.67	1.78	.75	1.07	.50	.37	.53	.25	.0042 .0040 .0043 .0041
$\begin{array}{c} 2\frac{1}{2} \times 2 \\ 2\frac{1}{2} \times 2 \\ 2\frac{1}{4} \times 1\frac{1}{2} \\ 2\frac{1}{4} \times 1\frac{1}{2} \end{array}$	$\begin{array}{c c} \frac{1}{2} \\ 3 \\ 16 \\ 5 \\ 16 \\ 3 \\ 16 \end{array}$	4.00 1.57 1.97 1.23	2.00 .79 .99 .61	.52 .66 .41	.49	.31 .39 .25	.26 33 5 .20	.20 .25 .15	.16	.13 .16 .10	.0048 .0057 .0055
$ \begin{array}{c c} 2 \times 1\frac{3}{4} \\ 2 \times 1\frac{3}{4} \\ \hline 1\frac{3}{8} \times 1\frac{1}{8} \\ 1\frac{3}{8} \times 1\frac{1}{8} \end{array} $	$\frac{\frac{3}{16}}{\frac{5}{16}}$	$ \begin{array}{c c} 1.60 \\ 1.01 \\ \hline .77 \\ .31 \end{array} $	$\frac{1}{7} \frac{.50}{.39}$	$\frac{0}{0}$ $\frac{.34}{.26}$.25	$\begin{vmatrix} .20 \\ .15 \end{vmatrix}$	$\begin{array}{c c} & .17 \\ \hline & .13 \\ \hline \end{array}$	$\frac{.13}{.10}$	$\frac{10}{0.08}$	08 .08	.0059_

Safe loads given include weight of angle. Maximum fiber strain, 16,000

lbs. per sq. in. Safe loads for intermediate spans can be obtained by dividing the coeffi-

cient of strength by the span, in feet.

Loads given to the right of the zigzag line produce deflections exceeding of the span. Deflections, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL ANGLES.

UNEQUAL LEGS, IN TONS OF 2,000 LBS.

Short Leg Vertical.

Angles being secured against yielding sideways.

	Size of Angle, Inches.	Thickness, Ins.	Coefficient of strength in tons.				Span	in fee	t.			ction cient.
	Size of	Thickn	Coeffic stren to	2	3	4	5	6	8	10	12	Deflection Coefficient.
6 6	$\begin{array}{c} \times 4 \\ \times 4 \end{array}$	7 3 8	$20.5 \\ 8.50$		2.83	2.13	4	1.42	$\frac{2.56}{1.06}$	2.05 $.85$.71	.0029
5 5	$\begin{array}{c} \times 3\frac{1}{2} \\ \times 3\frac{1}{2} \end{array}$	3438	$\begin{array}{c} 12.75 \\ 6.45 \end{array}$	$\begin{bmatrix} 6.38 \\ 3.23 \end{bmatrix}$	$\frac{4.25}{2.15}$	$\frac{3.19}{1.61}$		$\frac{2.13}{1.08}$	1.59 .81	$\begin{array}{c} 1.28 \\ .64 \end{array}$	$1.06 \\ .54$.0034 $.0031$
5 5	×3 ×3	$\frac{3}{4}$ $\frac{5}{16}$	$9.85 \\ 3.99$	4.93 2.00	$\frac{3.28}{1.33}$	$\frac{2.46}{1.00}$		1.64	$1.23 \\ .50$.99	.82 .33	.0039
$\overline{4\frac{1}{2}}$	×3	$\frac{\frac{3}{4}}{\frac{5}{16}}$	9.33	4.66	3.11	$\overline{2.33}$	1.87	1.55	1.17	.93	.78	.0040
4	$\frac{\times 3}{\times 3^{\frac{1}{2}}}$	$\frac{\overline{16}}{\frac{3}{4}}$	$\frac{3.99}{12.4}$	6.20	$\frac{1.33}{4.13}$		$\frac{.80}{2.48}$	$\frac{.67}{2.07}$	$\frac{.50}{1.55}$	$\frac{.40}{1.24}$	$\frac{.33}{1.03}$	$\frac{.0036}{.0035}$
44	$\begin{array}{c} \times 3\frac{1}{2} \\ \times 3\frac{1}{2} \\ \times 3 \end{array}$	3 4 5 16 5	$\frac{5.3}{6.8}$	$\frac{2.65}{3.40}$	1.77	$\frac{1.33}{1.70}$	1.06 1.36	.88 1.13	.66 .85	.53	.44	.0032
4	$\times 3$	5 8 5 16	3.95	1.97	1.32	.99	.79	.66	.49	.40	.33	.0037
	$\times 3$	5 5 16	7.04 3.84	$\frac{3.52}{1.92}$		$\frac{1.76}{.96}$	$\frac{1.41}{.77}$	1.17 .64	.88 .48	.70 .38	.59	.0040
$3\frac{1}{2}$ $3\frac{1}{2}$	$\begin{array}{c} \times 2\frac{1}{2} \\ \times 2\frac{1}{2} \end{array}$	$\frac{9}{16}$	$\frac{4.75}{2.19}$	2.37 1.09	$\frac{1.58}{.73}$	1.19 .55	.95	.79 .36	.59 .27	.48 .22	.40 .18	.0047
3	$\times 2^{\frac{1}{3}}$	$\frac{9}{1.6}$	4.59	2.29	1.53	$\overline{1.15}$.93	.76	.57	.46	.38	.0048
3	$\begin{array}{c} \times 2^{\frac{1}{2}} \\ \times 2 \end{array}$	1/4 1/2 1/4	2.13 2.51	1.07 1.25	.71 .83	.53 .63	.43 .50	.36	.31	.21	.18 .21	.0045
$\frac{3}{2}$	$\frac{\times 2}{\times 2}$		$\frac{1.39}{2.45}$	$\frac{.69}{1.23}$.46	$\frac{.35}{.61}$.28		.17	.14	12	.0055
$2^{ ilde{1}}_{2}$	$\times 2$	$\frac{1}{2}$ $\frac{3}{16}$	1.05	.52	.35	.26	.21	.17	.13	.25 .10		.0060
$2rac{1}{4} \ 2rac{1}{4}$	$\begin{array}{c} \times 1_{\frac{1}{2}} \\ \times 1_{\frac{1}{2}} \end{array}$	$\frac{5}{16}$ $\frac{3}{16}$.96 .59	.48 .29	.32 .19	.24 .15	.19	.16 .10	.12	$.10 \\ .06$.0077
$\overline{2}$	$\times 1\frac{3}{4}$	16	1.23	.61	.41	.31	.25	.20	.15	.12		.0067
$\frac{2}{1\frac{3}{8}}$	$\frac{\times 1^{\frac{2}{4}}}{\times 1^{\frac{1}{8}}}$	$\frac{\frac{3}{16}}{\frac{5}{16}}$	$\frac{.80}{.53}$	$\frac{.40}{.27}$	$\frac{.27}{.18}$.20	.16	$\frac{.13}{.09}$	$\frac{.10}{.07}$.08		$\frac{.0065}{.0111}$
13/8	$ imes 1rac{1}{8} imes 1rac{1}{8}$	10	.21	. 11	.07		.04		.03			.0099

Safe loads given include weight of angle. Maximum fiber strain, 16,000 lbs. per sq. in.

Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.

Loads given to the right of the zigzag line produce deflections exceeding $\frac{1}{360}$ of the span. Deflections, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL Z BARS,

IN TONS OF 2000 LBS.

Web vertical.

Z bars being secured against yielding sideways.

Size of Z bar,	Thick- ness,	Coefficient of strength, in tons.				Span	in feet.				ction cient.
Ins.	Ins.	Coefficient of strength, in tons.	2	3	4	5	6	8	16	12	Deflection Coefficient.
$\begin{array}{c} 6 \\ 6\frac{1}{16} \\ 6\frac{1}{8} \end{array}$	$\frac{\frac{3}{8}}{\frac{7}{16}}$	45.0 52.4 59.9	$26.2 \\ 29.9$	17.5 19.9	13.1 14.9	$\begin{array}{c} 10.5 \\ 11.9 \end{array}$	8.73 9.98			4.37	.0027
$\begin{array}{ c c }\hline 6 \\ 6\frac{1}{16} \\ 6\frac{1}{8} \\ \end{array}$	$\frac{\frac{9}{16}}{\frac{5}{8}}$	61.6 68.4 75.2	37.6	$\begin{array}{c} 22.8 \\ 25.1 \end{array}$	17.1 18.8	15.0	$\frac{11.4}{12.5}$	9.40	7.52	6.27	.0028 .0027 .0027
$ \begin{array}{c c} 6 \\ 6 \\ 1 \\ 6 \\ 8 \end{array} $	13 16 7×	75.0 81.2 87.5	$\frac{40.6}{43.8}$	29.2	21.9	$\frac{16.2}{17.5}$	14.6	$\begin{array}{c} 10.2 \\ 10.9 \end{array}$	8.75	7.29	
$ 5 $ $ 5\frac{1}{16} $ $ 5\frac{1}{8} $	38 7 16	28.5 34.1 39.7	19.9	11.4 13.2	9.92	7.94	4.75 5.67 6.62	4.96	$\frac{3.41}{3.97}$	$\frac{3.31}{1}$.0033 .0033 .0032
5 5 16 5 8	1 9 1 6 5 8 THE	$41.0 \\ 46.0 \\ 51.1$	25.6	$\begin{array}{c} 15.3 \\ 17.0 \end{array}$	11.5 12.8	10.2	$\begin{array}{c} 7.67 \\ 8.52 \end{array}$		4.60 5.11	4.26	.0033
$ \begin{array}{c} 5 \\ 5\frac{1}{16} \\ 5\frac{1}{8} \end{array} $	$\begin{array}{c} \frac{11}{16} \\ \frac{3}{4} \\ \frac{13}{16} \\ \end{array}$	50.5 55.2 61.0	$\begin{array}{c} 27.6 \\ 30.5 \end{array}$	20.3	13.8 15.2	$\frac{11.0}{12.2}$	10.2		6.10	4.60 5.10	.0033 .0033 .0032
$\begin{array}{c c} 4 \\ 4\frac{1}{16} \\ 4\frac{1}{8} \end{array}$	5 16 3 8	16.8 20.9 24.9	12.5	8.30	$\substack{5.22\\6.22}$	4.98	3.48 4.15	$2.61 \\ 3.11$	2.09 2.49		.0041
$\begin{array}{c c} 4 \\ 4\frac{1}{16} \\ 4\frac{1}{8} \end{array}$	$ \begin{array}{c} \frac{7}{16} \\ \frac{1}{2} \\ \frac{9}{16} \end{array} $	25.8 29.4 33.0	14.7 16.5	$9.80 \\ 11.0$	7.35 8.25	$\substack{5.88 \\ 6.60}$	$\frac{4.90}{5.50}$	3.23 3.68 4.13	$\begin{array}{c} 2.94 \\ 3.30 \end{array}$	2.75	.0041 .0041 .0040
$\begin{array}{c} 4 \\ 4\frac{1}{16} \\ 4\frac{1}{8} \end{array}$	$\begin{array}{c} \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4} \end{array}$	32.3 35.5 38.7	17.8 19.4	$\begin{array}{c} 11.8 \\ 12.9 \end{array}$	$8.88 \\ 9.68$	7.76	$\begin{array}{c} 5.92 \\ 6.45 \end{array}$	4.88 4.84	3.87	3.23	.0041 .0041 .0040
$\begin{array}{c} 3\\ 3\frac{1}{16} \end{array}$	$\begin{array}{r} \frac{1}{4} \\ \underline{} \\$	$10.3 \\ 12.7$	6.35	4.23	3.18	2.54	2.12		1.27	1	.0055
$\begin{array}{c} 3\\ 3\frac{1}{16} \end{array}$	$\begin{array}{c} \frac{3}{8} \\ \frac{7}{16} \end{array}$	13.7 15.9	7.95	5.30	3.98	3.18		1.99			.0055 .0054
$\begin{array}{c} 3\\3\frac{1}{16} \end{array}$	$\begin{bmatrix} \frac{1}{2} \\ \frac{9}{16} \end{bmatrix}$	16.3 18.3	8.15 9.15	$\begin{array}{c} 5.43 \\ 6.10 \end{array}$	4.08 4.58	3.26 3.66	$\begin{array}{c} 2.72 \\ 3.05 \end{array}$	2.04 2.29			.0055 .0054

Safe loads given include weight of Z. Maximum fiber strain, 16,000 lbs. per sq. in. Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.

Loads given to the right of the zigzag line produce deflections exceeding 1/360 of the span. Deflection, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

BEAM GIRDERS.

It frequently happens in building construction that a single I beam is insufficient to carry the imposed load. Where heavy loads, such as brick walls, vaults, etc., are to be supported, a single I beam is inadequate and two or more beams are used side by side, bolted together with cast iron or steel separators, as shown on page 38, Figs. 7, 8, and 9. These separators serve to hold the compression flanges of the beams in position to prevent deflection sideways, and also, in a measure, to cause the beams to act together and distribute the load uniformly on the component beams of the girder. Separators should be provided at the supports and at points where heavy loads are imposed and at intervals of not exceeding 6 feet. A table is given on page 44 by which the approximate weights of separators can be obtained for any size and width of beam girders.

In designing floors for buildings, it is desirable to have a minimum number of interior supporting columns consistent with economy, and a beam girder, consisting of a pair of **I** beams, is frequently advantageous for supporting the steel

floor joists as in Figs. 1 and 3 on page 38.

Girders, composed of two or more I beams, are commonly used to span openings in brick walls. If the wall to be supported is thoroughly seasoned and without openings, the weight carried by the girder can safely be assumed to that of a rectangle of wall having a length equal to the opening and a height of $\frac{1}{3}$ of the opening; for, if the girder should fail, the line of rupture of the brickwork would be found within this rectangle. If the wall is newly built, or if it has openings for windows or other purposes, the girder must be designed to carry the entire wall above the girder and between the supports.

In obtaining the weight of brick walls, it is customary to assume a cubic foot of brickwork as weighing 120 lbs. The weights, per superficial square foot, for different walls, are,

8′′	wall,	80 lbs.	20" wall,	.200 lbs.
12"	"	I20 "	24′′ "	.240 "
1611	66	160 W	28// "	280 "

When walls are faced with stone, the weight of the stonework, taken at 160 lbs. per cubic foot, must be added. If the walls are plastered, add 5 lbs. per square foot for the weight of the plastering.

A box girder consisting of a pair of steel **I** beams, with top and bottom flange plates, furnishes an economical girder for short spans. The flange plates are riveted to the beams with $\frac{3}{4}$ " diameter rivets spaced from 6" to 9" centers. In short girders, care must be taken to have a sufficient number of rivets in each plate, between the end of the girder and the center of span, to develop the full tensile or compressive strength of the plate.

The safe loads in the following tables have been computed from the moments of inertia of the sections, deducting the rivet holes in each flange. A maximum fiber strain of 15,000 lbs. per square inch is used, instead of the 16,000 lbs. fiber strain allowed on rolled beams, to allow for the injury to the strength of the material due to punching the holes for the rivets.

Suppose it is required to select a beam box girder to safely support a load of 45 tons, including the weight of the girder itself, over a span of 25 feet. By referring to the tables it will be found that a girder, composed of two 15" \times 42 lb. I beams with flange plates 14" $\times \frac{5}{8}$ ", has a safe load of only 40.0 tons on this span; but each $\frac{1}{16}$ " increase in thickness of flange plates adds 2.16 tons to the safe load, so that the flange plates would require to be $\frac{3}{16}$ " thicker, or $\frac{13}{16}$ " for each plate.

The deflection of the girder under this load, in inches, would be obtained by multiplying the Deflection Coefficient by the square of the span in feet; or,

$$.00102 \times \overline{25}^2 = 0.64''.$$

SAFE LOADS, IN TONS OF 2000 LBs., UNIFORMLY DISTRIBUTED. 2-12" Steel **I** Beams and 2 Steel Plates $14'' \times \frac{1}{2}$ "

12	Span, center to center of Bearings, in Feet.	2 plates 14" × ½"	12" I Beams 40.0 lbs. per foot.	2 plates, 14"×½"	12" I Beams 31.5 lbs. per foot.	Deflection Coefficient = .00127
13	Span, Be	includ'g Wgt. of Girder,	Increase in Thickness of	includ'g Wgt.	Increase in Thickness of	Deflectic
Wgt. per lineal ft. of girder, includ'g rivet heads=131 lbs. Wgt. per lineal ft. of girder, includ'g rivet heads=115 lbs.	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	57.0 53.0 49.5 46.4 43.6 41.2 39.0 37.1 35.3 33.7 32.3 30.9 29.7 28.5 27.5 26.5 25.6 24.7 23.9 23.2 22.5 21.8 21.2 20.6 20.1 19.5 19.0	3.33 3.09 2.89 2.71 2.55 2.41 2.28 2.17 2.06 1.97 1.88 1.80 1.73 1.67 1.60 1.55 1.49 1.44 1.40 1.35 1.31 1.27 1.24 1.20 1.17 1.14 1.11	51.0 47.4 44.2 41.5 39.0 36.8 34.9 33.2 31.6 30.2 28.8 27.6 26.5 25.5 24.6 23.7 22.9 22.1 21.4 20.7 20.1 19.5 19.0 18.4 17.9 17.5 17.0 Wgt. per line	3.37 3.13 2.92 2.74 2.58 2.43 2.31 2.19 2.09 1.99 1.90 1.83 1.75 1.68 1.62 1.56 1.51 1.46 1.41 1.37 1.33 1.29 1.25 1.22 1.18 1.15 1.12	Increase in Weight of Girders for each $\frac{1}{16}$ Inchincrease in Thickness of Flange Plates = 6 Lbs. per Lineal Foot.

Maximum fiber strain of 15,000 lbs. per square inch; holes for $\frac{3''}{4}$ rivets in both flanges deducted.

Deflection, in inches, under tabular loads, equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED. 2-15" Steel **I** Beams and 2 Steel Plates $14'' \times \frac{5}{8}$ ".

Span, center to center of Bearings, in Feet.	2 plates 14"× 5"	15" I Beams 60.0 lbs. per foot. O" Inc. in Safe	2 plates 14"×§"	15" I Beams 42.0 lbs. per foot.	Deflection Coefficient = .00102
Span B	includ'g Wgt. of Girder, in Tons.	Load for $\frac{1}{16}$ in. Increase in Thickness of Flange Plates.	includ'g Wgt. of Girder, in Tons.	Load for 16 in. Increase in Thickness of Flange Plates.	Deffec
12 13 14 15 16 17 18 19	105.3 97.2 90.3 84.3 79.0 74.4 70.2 66.5	4.32 3.99 3.71 3.46 3.24 3.05 2.88 2.73	83.4 77.0 71.5 66.7 62.6 58.9 55.6 52.7	4.49 4.15 3.85 3.59 3.37 3.17 2.99 2.83	increase in leal Foot.
20 21 22 23 24 25 26 27 28 29	63.2 60.2 57.5 55.0 52.7 50.6 48.6 46.8 45.1 43.6	2.60 2.47 2.36 2.26 2.16 2.08 2.00 1.92 1.85 1.79	50.1 47.7 45.5 43.5 41.7 40.0 38.5 37.1 35.8 34.5	2.69 2.57 2.45 2.34 2.25 2.16 2.07 2.00 1.92 1.86	Increase in Weight of Girders for each $\frac{1}{16}$ Inchincrease in Thickness of Flange Plates = 6 Lbs. por Lineal Foot.
30 31 32	42.1 40.8 39.5	1.73 1.67 1.62	. 33.4 32.3 31.3	1.80 1.74 1.68	Veight o
33 34 35 36 37 38 39 40	38.3 37.2 36.1 35.1 34.2 33.3 32.4 31.6	1.57 1.53 1.48 1.44 1.40 1.37 1.33 1.30	30.3 29.4 28.6 27.8 27.1 26.3 25.7 25.0	1.63 1.59 1.54 1.50 1.46 1.42 1.38 1.35	Increase in V Thickness
	Wgt. per line includ'g rivet	al ft. of girder, heads=183 lbs.	Wgt. per line includ'g rivet	al ft. of girder, heads=147 lbs.	

Maximum fiber strains of 15,000 lbs. per square inch; holes for $\frac{311}{4}$ rivets

in both flanges deducted.

Deflection, in inches, under tabular loads, equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED. 2-18" Steel **I** Beams and 2 Steel Plates $16'' \times \frac{3}{4}$ ".

Span, center to center of Bearings, in Feet.	2 plates 16" × 3"	18" I Beams 70.0 lbs. per foot.	2 plates 16" × 3"	18" I Beams 55.0 lbs. per foot.	Deflection Coefficient = .00085.
Spar	Safe Loads, includ'g Wgt. of Girder, in Tons.	Load for 16 in. Increase in Thickness in Flange Plates.	Safe Loads, includ'g Wgt. of Girder, in Tons.	Load for Te in. Increase in Thickness in Flange Plates.	Deflection
12 13 14 15 16 17 18 19	154.9 142.9 132.7 123.9 116.1 109.3 103.2 97.8	6.29 5.80 5.39 5.03 4.72 4.44 4.19 3.97	141.5 130.6 121.3 113.2 106.1 99.9 94.3 89.4	6.37 5.88 5.46 5.09 4.77 4.49 4.24 4.02	crease in Foot.
20 21 22 23 24 25 26 27 28 29	92.9 88.5 84.5 80.8 77.4 74.2 71.5 68.8 66.4 64.1	3.77 3.59 3.43 3.28 3.14 3.02 2.90 2.79 2.69 2.60	84.9 80.8 77.2 73.8 70.7 67.9 65.3 62.9 60.6 58.5	3.82 3.64 3.47 3.32 3.18 3.06 2.94 2.83 2.73 2.63	Increase in Weight of Girders for each 1st Inch increase in Thickness of Flange Plates=7 lbs. per Lineal Foot.
30 31 32 33 34 35 36 37 38 39 40	61.9 59.9 58.1 56.3 54.7 53.1 51.6 50.2 48.9 47.6 46.5	2.52 2.43 2.36 2.29 2.22 2.16 2.10 2.04 1.98 1.93 1.89	56.6 54.8 53.1 51.4 49.9 48.5 47.2 45.9 44.7 43.5 42.4	2.55 2.46 2.39 2.32 2.25 2.18 2.12 2.06 2.01 1.96 1.91	Increase in Weight of (Thickness of Flange
Man	includ'g rivet	al ft. of girder, heads=225 lbs.	Wgt. per line includ'g rivet	al ft. of girder, heads=195 lbs.	/ rivets

Maximum fiber strains of 15,000 lbs. per square inch; holes for \(\frac{3}{4} \) "rivets in both flanges deducted

in both flanges deducted.

Deflection in inches, under tabular loads, equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED. 2-20" Steel I Beams and 2 Steel Plates $16'' \times \frac{3}{4}"$

Span, center to center of Bearings, in Feet.	2 plates 16"× 3"	20" I Beams 80.0 lbs. per foot.	2 plates, 16"×3"	20" I Beams 65.0 lbs. per foot.	Deflection Coefficient = ,00077
Span, Be	Safe Loads, includ'g Wgt. of Girder, in Tons.	Inc. in Safe Load for 1/16 in. Increase in Thickness of Flange Plates.	Safe Loads, includ'g Wgt. of Girder, in Tons.	Inc. in Safe Load for 1/16 in. Increase in Thickness of Flange Plates.	Deflectio
14 15 16 17 18 19	154.3 144.1 135.1 127.1 120.1 113.7	6.01 5.61 5.26 4.95 4.68 4.43	144.1 134.5 126.1 118.7 112.1 106.2	6.06 5.66 5.30 4.99 4.72 4.47	icrease in il Foot.
20 21 22 23 24 25 26 27 28 29	108.1 102.9 98.2 93.9 90.0 86.4 83.1 80.0 77.2 74.5	4.21 4.01 3.83 3.66 3.51 3.37 3.24 3.12 3.01 2.90	100.8 96.0 91.7 87.7 84.0 80.7 77.6 74.7 72.0 69.6	4.24 4.04 3.86 3.69 3.54 3.40 3.26 3.14 3.03 2.93	Increase in Weight of Girders for each 7d Inchincrease in Thickness of Flange Plates == 7 Lbs. per Lineal Foot.
30 31 32 33 34 35 36 37 38 39 40	72.0 69.7 67.5 65.5 63.6 61.7 60.0 58.4 56.9 55.4	2.81 2.72 2.63 2.55 2.48 2.41 2.34 2.27 2.22 2.16 2.10	67.2 65.0 63.0 61.1 59.3 57.6 56.0 54.5 53.1 51.7 50.4	2.83 2.74 2.65 2.57 2.50 2.43 2.36 2.29 2.23 2.18 2.12	Increase in Weight of Girders for Thickness of Flange Plates = 7
	Wgt. per lines includ'g rivet	al ft. of girder, heads=245 lbs.	Wgt. per linez includ'g rivet l	al ft. of girder, heads=215 lbs.	

Maximum fiber strains of 15,000 lbs. per square inch; holes for $\frac{3}{4}$ rivets

in both flanges deducted.

Deflection, in inches, under tabular loads, equals the product of the Deflection Coefficient by the square of the span, in feet.

NOTES ON THE STRENGTH AND DEFLECTION OF BEAMS.

Let A = area of section, in square inches.

L = length of span, in feet.

l = length of span, in inches.

W = load, uniformly distributed, in lbs.

P = load, concentrated at any point, in lbs.

h = height of cross-section, in inches.

M = bending moment, in foot-lbs.

m =bending moment, in inch-lbs.

n =greatest distance of center of gravity of section from top or from bottom, in inches.

S = strain per square inch in extreme fibers of beam, either top or bottom, in lbs., according as *n* refers to distance from top or from bottom of section.

D = maximum deflection, in inches.

I = moment of inertia of section, neutral axis through center of gravity.

I' = moment of inertia of section, neutral axis parallel to above, but not through center of gravity.

z = distance between these neutral axes.

Q = section modulus.

R = least moment of resistance of section, in inch lbs.

r = radius of gyration, in inches.

C = coefficient of transverse strength, in lbs.

E = modulus of elasticity (27,000,000 for wrought iron and 29,000,000 for steel).

For a beam of any cross-section the following formulæ express the relation existing between the properties of the section.

$$I' = I + Az^2;$$
 $r = \sqrt{\frac{I}{A}};$ $Q = \frac{I}{n};$ $R = \frac{I}{n}S = QS;$ $C = \frac{2}{3}QS.$

If a beam, supported at the ends, is loaded with a weight, this weight produces reactions at the two supports, the sum of which is equal to the weight. The weight and the reactions are the external forces acting on the beam. They produce a

bending of the beam, by which the fibers of the upper portion of the beam are shortened and the fibers of the lower portion are elongated, the result of a compressive strain in the upper portion and a tensile strain in the lower portion of the cross-section of the beam. Between the top and the bottom of the cross-section is a place where no shortening or lengthening of the fibers occurs, and this is called the *neutral axis*. In steel, and in other homogeneous materials having equal resistances to compression and tension alike, the neutral axis is coincident with the center of gravity of the section, and in symmetrical sections, as in I-beams, this is at the middle of the depth of the beam.

At any point in the length of the beam, the tendency to produce bending is equal to the algebraic sum of the moments of the external forces at that point. This moment of the external forces is called the "bending moment." A beam resists bending at any point by the resistance of its particles to extension or compression, the sum of the moments of which about the neutral axis of the cross-section is called the "moment of resistance." The fundamental principle of the strength of beams is that the bending moment of the external forces is equal to the moment of resistance of the internal forces resisting flexure. As the moment of resistance of a section is generally expressed in inch-pounds, the bending-moment must also be expressed in inch-pounds. The following formulæ give the relations existing between bending-moment, moment of resistance, section modulus, and the strain per square inch.

$$m = R;$$
 $Q = \frac{m}{S};$ $m = QS;$ $S = \frac{m}{S}.$

If the bending-moment is in foot-pounds the following relations are convenient:

$$C = 8 M; \qquad M = \frac{C}{8};$$

and for a uniformly distributed load, W, in lbs., the span, L, being taken in feet,

$$C = WL;$$
 $W = \frac{C}{I}.$

These last two formulæ are of great practical convenience for obtaining the safe uniformly distributed loads for the va-

rious sections, as it is only necessary to divide the coefficient of strength by the span, in feet, to obtain the safe uniformly distributed load, in lbs. If the uniformly distributed load, in lbs., is given, multiply it by the span in feet and the result is the required coefficient of strength, and the proper section required can be obtained by inspection of the tables.

The moment of inertia, section modulus, radius of gyration, and coefficient of strength are given in the tables of properties for all sections of structural shapes of steel rolled by the Passaic Rolling Mill Co.

REACTIONS.

If a beam resting at its extremities upon two supports is loaded with a weight, each support reacts with an upward pressure, which is called the reaction of the support. reaction is equal to the weight carried by the support. sum of the reactions of the two supports will equal the total load on the beam. If the load is either uniformly distributed, applied at the center of the span, or symmetrically placed on each side of the center of the span, the reaction of the two supports will be the same and each equal to one-half the load.

When the loads are not symmetrically placed, the reactions are determined A and B and loaded with the

weights P' and P". The reaction at one support due to a weight is equal to the weight multiplied by the distance of its center of gravity from the other support and divided by the length of the span. The total reaction at the support is equal to the sum of the reactions produced by all the loads. Then,

$$\frac{P'' \ b}{l} = \text{reaction at A due to weight P''},$$

$$\frac{P' \ (a+b)}{l} = \text{reaction at A due to weight P'},$$

$$V' = \frac{P'' \ b}{l} + \frac{P' \ (a+b)}{l} = \text{total reaction at A}.$$

In the same way the total reaction V", at B is obtained, and as a check on the calculations, V' + V'' must equal P' + P''.

SHEAR.

The loads and opposing reactions on a beam not only tend to bend the beam but also to shear it across vertically. vertical force which tends to produce shearing is called the shear. The shear at an abutment or support is equal to the reaction of the support. At any point between the supports the shear is equal to the difference between the reaction at one support and the total load occurring between that support and the point considered. Thus, referring to Fig. I, the shear at the support A is equal to the reaction V'. The shear at all points between A and the point of application of the load P' is uniform and equal to the reaction V', for the reason that no load occurs to be deducted from the reaction. The shear at any point between P' and P'' is obtained by deducting the load P' from the reaction V', and the shear is therefore uniform between the points of application of these loads. Where a beam is loaded with concentrated weights, changes in the amount of shear occur only at the points where the loads are applied. If the load is distributed, the shear changes in amount at every point of the loaded length. In all cases the shear can be calculated by first finding the reaction at one support produced by the total load, and the shear at any point will be the difference between this reaction and the sum of all the loads occurring between that support and the point con-

If a beam, supported at both ends, carries a uniformly distributed load over its entire length, the shear at each support is one-half the total load on the beam, and decreases uniformly to zero at the center of the span. If the load is concentrated at the center of the span, the shear is uniform throughout the entire length of the beam, and equal to one-half the load.

If the reaction, which acts upward, is considered as positive, and the loads, which act downward, are considered as negative, the shear at any point is the algebraic sum of the vertical forces acting on the beam between either support and the point considered.

BENDING-MOMENT.

The applied loads and their reactions constitute the external forces which tend to bend the beam. This bending is

measured by the moment of the external forces, which is called

the bending-moment. Let AB be a beam supported A at its ends and loaded with the weights P₁, P₂, and P₃. These weights A produce reactions at A

and B, which are represented by V' and V'' respectively. If a section is taken at k, at a distance, x, from the left support, and the left-hand portion only of the beam is considered, the tendency to produce bending at k is measured by the moment of the reaction about that point. The moment of a force being equal to the product of the force by the lever arm of its action, the bending-moment at k is equal to the reaction V' multiplied by the distance x. Similarly the bending-moment at P₁ is equal to the product of the reaction V' by the distance a. At P₂ the reaction V' produces a moment equal to the product of the reaction by its distance from Po, and the weight P1 also produces a moment equal to the weight P₁ multiplied by its distance from P₂. The reaction acts upward and tends to produce rotation about P2 in the direction of the motion of the hands of a watch. The weight P1 acts downward and tends to produce rotation around P₂ in a direction opposite to the motion of the hands of a watch. The reaction V' and the weight P₁, therefore, produce moments around P₂ tending to produce rotation in opposite directions. The resulting bending-moment at P2 is the difference of the two moments. If moments tending to produce rotation in one direction are considered as positive, and moments tending to produce rotation in the opposite direction as negative, then the bending moment at any point is obtained by taking the algebraic sum of the moments of all the forces, acting on the beam between either support and the point considered, around that point. From this it follows that the bending moment

at
$$P_1 = V' a$$
.
at $P_2 = V' (a + b) - P_1 b$.
at $P_3 = V' (a + b + c) - P_1 (b + c) - P_2 c$.

In calculating the bending moment the weights are taken in pounds. If the distances are taken in feet the bending-moment will be expressed in foot-lbs. If the distances are taken in inches the bending-moment will be in inch lbs.

The bending-moment varies from point to point and attains a maximum value at some point the location of which can be obtained by trial. The point at which the bending-moment attains a maximum depends upon the shear. If the load is distributed, the maximum moment will occur at that point in the length of the beam where the shear becomes equal to zero; that is, at the point where the load on the beam between one support or abutment and the point considered becomes equal to the reaction of that support. If the loads are concentrated at several points, maximum bending will always occur at the point of application of one of the loads. particular load at which maximum bending occurs, is the one at which the sum of all the loads on the beam between one support or abutment up to and including the load in question, first becomes equal to or greater than the reaction at the support.

In general, the bending-moment is a maximum at the point where the shear becomes equal to zero, or, due regard being paid to the algebraic sign of the shear, at the point where the shear changes from a positive value to a negative value, or the

reverse.

EXAMPLE.

Let AB represent a beam, 20 feet long between centers of supports, loaded in the manner shown:

The portion of the load P_3 carried by the left-hand support is $\frac{40}{240}$ of P_3 , or 1,000 lbs.; the portion of P_2 carried by the left-hand support is $\frac{100}{240}$ of P_2 , or 5,000

lbs.; similarly the portion of P_1 carried by the same support is $\frac{160}{240}$ of P_1 , or 6,000 lbs. The reaction, V_1 , of the left support is the sum of these three, or 12,000 lbs. In the same manner the reaction V_2 , at the right-hand support, can be obtained by taking the sum of the portions of the loads going to that support, and will be found to be 15,000 lbs. The sum of the two reactions must equal the sum of the loads on the beam.

If the bending-moment is taken at the point of application of the load P_2 , and the left-hand portion of the beam only is

considered, the reaction V_1 produces a moment equal to the product of the reaction by its distance from P_2 ; and the load P_1 produces a moment equal to the product of the load by its distance from P_2 . As these two moments tend to produce rotation in opposite directions, the resultant moment of the external forces around P_2 is equal to the difference between these two moments, or the bending moment, in inch-lbs.,

$$m = V_1 \times 140 - P_1 \times 60 = 12,000 \times 140 - 9,000 \times 60$$

= 1,140,000 inch-lbs.

In this case this is the maximum bending-moment on the beam, because at the load P₂ the sum of the loads on the beam between the support A up to and including P₂ first becomes equal to, or greater than, the reaction at A.

If it is required to find the proper size of steel beam necessary to safely carry the above loads, the section modulus is found from the foregoing formulæ, assuming a fiber strain of 16,000 lbs. per square inch, as follows:

$$Q = \frac{m}{S} = \frac{1,140,000}{16,000} = 71.25$$

A 15" steel I-beam, weighing 50 lbs. to the foot, has a section modulus of 70.6, and is sufficient for the purpose.

If the bending-moment is wanted in foot-pounds, the lengths are taken in feet instead of in inches; and

$$M = V_1 \times II_{\frac{3}{3}} - P_1 \times 5 = I2,000 \times II_{\frac{3}{3}} - 9,000 \times 5 = 95,000 \text{ foot-lbs.}$$

and the coefficient of strength required for a steel beam to carry the loads is,

$$C = 8M = 8 \times 95,000 = 760,000$$

A 15" steel I, weighing 50 lbs. per foot, has a coefficient of strength of 753,300 lbs., and the size of beam required is the same as before.

The following tables give general formulæ for the bendingmoments, maximum safe loads, and deflections for beams loaded and supported in different ways. In using these tables to obtain loads, or deflections, all lengths must be expressed in inches.

	THE PASSAI	C ROLLING	MILL COM	PANY. 107		
Remarks.	Weakest section at right support.	Weakest section at center of beam.	Weakest section at point of application of load.	Weakest section at right support.		
Deflection, inches.	$\frac{\mathbf{P} l^3}{3\mathbf{E}\mathbf{I}}$	Pl ³ 48EI	Pab(21-a) ¹ /3a(21-a) 271EI	322EI		
Max. Load, Lbs.	n OS	450	1SQ ab	1689		
Bending Moment, inch lbs.	P ∞ Max. when ∞ = <i>l</i>	$\frac{\mathbf{P}_{\mathbf{X}}}{2}$ $\mathbf{M}_{\mathbf{d}\mathbf{X}_{*}} = \frac{\mathbf{P}_{\mathbf{I}}}{4}$	For the left side, Pbx l R For the right side, Pay	For the left side, $\frac{5Px}{16}$ For the right side, $FI\left(\frac{5}{32} - \frac{11y}{16I}\right)$		
Mode of Loading. Iches.	→ -x->	×1>	K	-13/x-13/		
Mod Lengths in inches.	One end firmly fixed, other end loaded.	Supported at both ends, loaded at center.	Supported at both ends, loaded any place.	One end fixed, other end supported, loaded at center.		

108 7	THE PASSAI	C ROLLING	MILL COMI	PANY.			
Remarks.	Weakest sections at either support, and at center.	Weakest sections at either support, and at all points between supports.	Weakest sections at points of application of loads, and at all points between loads.	Weakest section BEI ight support.			
Deflection, inches.	P13 192EI	For overhang: $\frac{Pa}{12EI} \left(3aI - 4a^{2} \right)$ For part between supports: $\frac{Pa}{16EI} \left(I - 2a \right)^{2}$	$rac{ ext{Pa}}{48 ext{EI}} \left(3l^2 - 4 ext{a}^2 ight)$				
Max. Load, Lbs.	88 8	2SQ	2SQ	280			
Bending Moment, inch lbs.	$\frac{P l}{2} \left(\frac{x}{l} - \frac{1}{4} \right)$ $Max = \frac{P l}{8}$	$\frac{\mathbf{Px}}{2}$ $\mathbf{Max.} = \frac{\mathbf{Pa}}{2}$	$\frac{\mathbf{P_X}}{2}$ $\mathbf{Max.} = \frac{\mathbf{Pa}}{2}$	$\frac{\mathbf{W}\mathbf{x}^2}{2l}$ $Max. = \frac{\mathbf{W}l}{2}$			
Mode of Loading. Iches Loads in lbs.			F. B. Y. F. B. Y. B. P.	w ×			
Mo Lengths in inches.	Both ends fixed, load at center.	Loaded at each end, two supports between ends.	Both ends supported, two symmetrical loads.	One end fixed, load uniformly distributed.			

	THE PASSAI	C ROLLING	MILL COM	PANY. 109			
Remarks.	Weakest section at center.	Weakest section at right support.	Weakest section at cither support.	Weakest section at right support.			
Deflection, inches.	$\frac{5\mathbf{W}l^3}{384\mathbf{EI}}$	$\frac{5\mathbf{W}l^3}{926\mathbf{EI}}$	$\frac{\mathbf{W} l^3}{384 \mathbf{E} \mathbf{I}}$	W13 15EI			
Max. Load, Lbs.	880	1 1	128Q	986			
Bending Moment, inch lbs.	$\frac{\mathbf{W}\mathbf{x}}{2}\left(1-\frac{\mathbf{x}}{l}\right)$ $\mathbf{M}\mathbf{a}\mathbf{x}_{\cdot} = \frac{\mathbf{W}l}{8}$	$\frac{\mathbf{W}\mathbf{x}}{2} \left(\frac{3}{4} - \frac{\mathbf{x}}{l} \right)$ $\mathbf{M}\mathbf{a}\mathbf{x} = \frac{\mathbf{W}l}{8}$	$\frac{\mathbf{W}^{l}}{2} \left(\frac{\mathbf{x}}{l} - \frac{\mathbf{x}^{2}}{l^{2}} - \frac{1}{6} \right)$ $\text{Max.} = \frac{\mathbf{W}^{l}}{12}$	$\frac{\mathbf{W}\mathbf{x}^3}{3t^2}$ $\mathbf{Max.} = \frac{\mathbf{W}l}{3}$			
de of Loading. Loads in lbs.	s mly w w w w w w w w w w w w w w w w w w w	ther w w w w w w w w w w w w w w w w w w w	xed, may dd. w	red, red, red, red, red, red, red, red,			
Mo Lengths in inches	Both ends supported, load uniformly distributed.	One end supported, other end fixed, load uniformly distributed.	Both ends fixed, load uniformly distributed.	One end fixed, load distributed increasing uniformly loangt the fixed end.			

	110 7	THE PASSAI	C ROLLING	MILL COM	PANY.
	Remarks.	Weakest section at center of span.	Weakest section at center of span.	Weakest section $\mathbf{x} = 0.52 \mathbf{l}$	Plation of \mathbf{a} to l' , l' , in which case, ad $= \frac{140 \mathrm{SQ}}{3 l}$
	Deflection, inches.	3 W l 3 320 EI	W1 3 60 EI	47 W l ³	The supporting power varies with the relation of \mathbf{a} to \mathbf{l} , and becomes a maximum when $\mathbf{a} = 0.207 \mathbf{l}$, in which case, Max. Bend. Mom. $= \frac{3 \mathbf{W} \mathbf{l}}{140}$; Max. Load $= \frac{140 \mathbf{SQ}}{3 \mathbf{l}}$
	Max. Load, lbs.	12 SQ	6 SQ.	810 SQ 104 l	The supporting powrand becomes a maximun Max. Bend. Mom. =
	Bending Moment, inch lbs.	$\mathbf{W}_{\mathbf{X}} \left(\frac{1}{2} - \frac{\mathbf{x}}{l} + \frac{2 \mathbf{x}^2}{3 l^2} \right)$ $\mathbf{M}_{3\mathbf{X}} = \frac{\mathbf{W}}{12} l$	$\mathbf{W}\mathbf{x} \left(\frac{1}{2} - \frac{2 \mathbf{x}^2}{3 \mathbf{l}^2} \right)$ $\mathbf{M}_{ax.} = \frac{\mathbf{W} \mathbf{l}}{6}$	$\frac{W_{\infty}}{3} \left(1 - \frac{\kappa}{l^2} \right)$ $Max. = \frac{104 \text{ W } l}{810}$	At either support: $\frac{Wa^2}{2l}$ At center of span: $\frac{W}{2}\left(a-\frac{l}{4}\right)$
	Mode of Loading. Iches.	way	**	w *	**************************************
C	Mo Lengths, in inches.	Both ends supported, load distributed, decreasing uniformly toward the center.	Both ends supported, load distributed, increasing uniformly toward the center.	Both ends supported, load distributed, increasing uniformly toward one end.	Two symmetrical supports, load uniformly distributed.

COMPARISON OF SAFE LOADS AND CORRESPONDING DEFLECTIONS, BEAMS LOADED AND SUPPORTED IN VARIOUS WAYS.

I the second column gives n the beam,	Relative Deflection under Safe Load.	1 0.80 Variable. Variable. 0.97 0.96 0.97 2.40 3.20 1.92 0.42 0.48 0.30 0.30
nparison, and The third o	Factor for Obtaining Equiv. Uni- form Load, Ends Sup'd.	$\begin{array}{c} 2 \\ 8ab \div 12 \\ 4a \div 1 \\ 3a \div 1 \\ 3a \div 1 \\ 1.03 \\ 4 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 23 \\ 1 \\ 12 \\ 12 \\ 4a \div 1 \\ 0.17 \\ \end{array}$
a unit of coring the beam. formly distril sunder their urison.	Relative Safe Load.	1 12 + 8ab 1 + 4a 11 + 4a 12 + 4a 0.97 4 + 4 8 + 8 1 + 4 1 + 4 1 + 4 1 + 4 2 + 4 2 + 4 2 + 4 3 + 8 1 + 4 1 + 4
The safe uniformly distributed load on the beam, having its ends simply supported, is taken as a unit of comparison, and the second column of the table gives the relative safe loads for the various ways of applying the load and supporting the beam. The third column gives a factor by which the load, as given for any case, may be multiplied and the result considered as a uniformly distributed load on the beam, having each end simply supported. The last column gives the relative deflections for the various cases under their safe loads, the deflection under the safe uniformly distributed load with ends simply supported, being taken as the unit of comparison.	MODE OF LOADING AND SUPPORTING BEAM.	Both ends simply supported, load uniformly distributed """ load concentrated at center of beam. """ load concentrated anywhere between supports. """ load in two parts symmetrically concentrated load distributed, increasing uniformly toward the center load distributed, increasing uniformly toward one end distributed, increasing uniformly toward one end distributed, increasing uniformly toward one end cantilever; one end firmly fixed, load uniformly distributed """ load concentrated at other end "" load increasing uniformly distributed """ load concentrated at center Two symmetrical sup- { load uniformly distributed, supports economically placed Two symmetrical sup- { load uniformly distributed, supports economically placed

MOMENT OF INERTIA AND SECTION MODULUS FOR USUAL SECTIONS.

Sections.	Moment of Inertia, I.	Section Modulus, Q.
X. A. h	$I = \frac{bh^3}{12}$	bh ² 6
<u>x</u> h	$I' = \frac{bh^3}{3}$	
<u>x</u> xh	$I = \frac{bh^3}{36}$	$Min. = \frac{bh^2}{24}$
x x h	$I' = \frac{bh^3}{12}$	
X d	$I = \frac{\pi d^4}{64} \\ = 0.0491 d^4$	$ \frac{\pi d^3}{32} \\ = 0.0982 d^3 $
X Xh, h	$I = \frac{bh^3 - b'h'^3}{12}$	<u>I</u> 0.5h
d. x g	$I = 0.0491 (d^4 - d'^4)$	$0.0982\left(d^{3}-\frac{d'}{d}^{4}\right)$
X X in	$I = \frac{b'n^3 + bn'^3 - (b-b')a^3}{3}$	$Min. = \frac{I}{n}$
b' x h' h	$I = \frac{bh^3 - 2b'h'^3}{12}$	<u>I</u> 0.5h
	D of neutral axi	is

XX Denotes position of neutral axis.

MOMENT OF INERTIA OF RECTANGLES.

A X | 18.

th, hes.			Width of	Width of Rectangle, in inches.											
Depth, in inches	1/4	3 8	1/2	<u>5</u> 8	3/4	7 8	1								
6	4.50	6.75	9.00	11.25		15.75	18.00								
7	7.15	10.72	14.29	17.86	21.44	25.01	28.58								
8	10.67	16.00	21.33	26.67	32.00	37.33	42.67								
9 10	$15.19 \\ 20.83$	$22.78 \\ 31.25$	$\begin{vmatrix} 30.38 \\ 41.67 \end{vmatrix}$	$\begin{vmatrix} 37.97 \\ 52.08 \end{vmatrix}$	$45.56 \\ 62.50$	53.16 72.92	$60.75 \\ 83.33$								
11 12	$27.73 \\ 36.00$	$41.59 \\ 54.00$	55.46 72.00	69.32 90.00	$83.18 \\ 108.00$	$97.06 \\ 126.00$	110.92 144.00								
13	45.77	68.66	91.54	114.43	137.31	160.00	183.08								
14	57.17	85.75	114.33	142.92	171.50	200.08	228.67								
15	70.31	105.47	140.63	175.78	210.94	246.09	281.25								
16	85.33	128.00	170.67	213.33	256.00	298.67	341.33								
17	102.35	153.53	204.71	255.89	307.06		409.42								
18	121.50	182.25	243.00	303.75	364.50		486.00								
19	142.90	214.34	285.79	357.24	428.68	500.14	571.58								
20	166.67	250.00	333.33	$\frac{416.67}{}$	500.00		666.67								
21	192.94	289.41	385.88	482.34	578.81	675.28									
22	221.83 253.48	332.75	$443.67 \\ 506.96$	$554.58 \\ 633.70$		776.42 887.18									
23 24	288.00	$380.22 \\ 432.00$	576.00	720.00		1008.00									
25	325.52	488.28	651.04	813.80		1139.32									
26	366.17	549.25	732.33		$\frac{1098.50}{1098.50}$										
27	410.06	615.09			1230.19										
28	457.33	686.00			1372.00										
29	508.10				1524.31										
30	$\frac{562.50}{}$				1687.50										
31	620.65				1861.94										
32					2048.00										
33					2246.06										
34 35					$2456.50 \\ 2679.68$										
36 37					$2916.00 \\ 3165.80$										
38					3429.50										
39					3707.44										
40					4000.00										
¥3															

FIREPROOF CONSTRUCTION.

A simple type of fireproof construction is illustrated in Fig. 1, page 38. Figs. 2, 3 and 4 show the manner of connecting the beams and girders with each other by means of connection angles, which are riveted or bolted to the beams and girders. The standard sizes of these connection angles and the number of bolts or rivets required are given on pages 46-47. The manner of connecting the beams and girders to the columns is illustrated by the drawings on page 43.

Brick arches were formerly largely used for the construction of fireproof floors in buildings. This type of construction consists usually of a 4" course of brick, resting on the lower flanges of the I beams against brick skewbacks, the arch having a rise at the center of not less than 3", and not less than 11/4 rise for each foot of span; in case the floor is to carry heavy loads, two or more courses of brick should be used. The I beam joists should be spaced about 5 or 6 ft. centers. The space above the arches is filled with concrete in which wooden strips are imbedded, to which the floor is nailed. The plastered ceiling is applied directly to the under side of the brick arches. The horizontal thrust of the arches must be provided for by the use of tie-rods, generally 3" diameter, spaced at intervals of from 4 to 6 ft. The tie-rods should pass through the beams as near the center of the skewback as possible; generally, the tie-rods should pass through the beams at a distance from the bottom of the beam equal to $\frac{1}{3}$ the depth of the beam. The thrust of the arches, in lbs. per lineal foot, can be found by the formula, $T = \frac{3 \text{ W L}^2}{2 \text{ R}}$, in which

W is the load per square foot, L the span of the arch in feet, and R the rise of the arch in inches. A channel or an angle should be used to support the arches abutting against the walls, and to properly distribute the loads upon the walls. The tie-rods in the arches abutting against the walls should be securely anchored to the wall channels or angles. The excessive weight and the lack of adequate protection of the lower flanges of the beams are serious objections to this type of construction; and where flat ceilings are required it is unavailable.

Hollow brick flat arches of the types shown on pages 39 and 40 are very generally used for the construction of fireproof floors. These arches are generally of porous terracotta material, which is made of a mixture of clay and sawdust subjected to an intense heat, which consumes the combustible material, leaving the brick porous and reducing the weight materially while preserving the fireproof qualities intact. For arches, partitions, furring, column covering, roof and ceiling tiles, etc., it is particularly adapted. It receives and holds plaster and readily admits driving of nails, which hold equally as well as if driven in wood. The underside of the arch being flat permits the construction of a level ceiling. The joints in the arches are made radial, and the blocks should be thoroughly cemented together. The beams should be spaced from 4 to 6 ft. apart and connected together with \(\frac{3}{4}\)' diameter tierods at intervals not exceeding 6 ft. The arch should have a thickness of at least 114 for each foot of span. The space above the arches is filled with a light concrete consisting of cinders and cement, into which wooden strips are imbedded, to which the flooring is nailed.

Fireproof partitions are constructed of porous terra-cotta hollow brick blocks set with broken joints and held in place at intervals with light angle iron or Tee iron studding.

Roofs and ceilings are constructed of hollow tiles set between Tee irons, as shown on page 40. Suspended ceilings may also be constructed of light Tee irons covered with wire

lathing and plastered.

All ironwork should be protected by a covering of fireproof material. The arches should always have a protection flange covering the underside of the beams. Beams, girders and columns, not inclosed in the flooring or partitions, should have a covering of fireproof material similar to the types illustrated on page 39. Particular attention should always be given to the proper covering of all ironwork with fireproof material in order that it may be protected from heat and prevent warping and settlement in case of fire.

The following table gives approximate safe loads, in lbs. per square foot, for ordinary flat arches, with a factor of safety of from 6 to 8, deduced from recent experiments on arches of this type. The margin of safety should be large for the reason

that, owing to the hasty and imperfect manner in which the arches are built in ordinary construction, they are liable to fail under much lighter loads than if carefully set.

APPROXIMATE SAFE LOADS ON FLAT ARCHES,
Pounds per Square Foot.

Depth	Distance between Beams.											
of Arch, Inches.	4 ft.	5 ft.	6 ft.	7 ft.	8 ft.							
6 7 8 9 10 12	150 200 275 300 325 400	100 150 175 200 225 250	125 140 150 200	100 125	100							

The weight of the fireproof construction should be calculated for each case. The floor weight consists of the weight of the arches, filling, flooring, plaster ceiling, and steel construction. Where partitions are permanent the floor beams immediately under them should be calculated to carry the partitions in addition to the regular floor load; but where partitions are not permanent, as in office buildings, it is customary to add 20 lbs. per sq. ft. to the weight of the floor construction in order to cover the weight of the partitions, thus permitting them to be changed, from time to time, as circumstances may require. The approximate weights of different types of fireproof floor construction are given in the following table.

The weights of the arches are taken from catalogues of standard manufacturers. The weight of the cinder concrete filling is taken at 72 lbs. per cubic foot. The finished floor line is assumed to be 3" above the top of the steel I beams, and the finished plaster line 2" below the underside of the I beams, except for brick arches. Cinder concrete is sometimes assumed to weigh 48 lbs. per cubic foot, but samples of perfectly dry cinder concrete from filling in New York buildings will average 72 lbs. per cubic foot.

APPROXIMATE WEIGHTS OF FIREPROOF FLOORS,

Exclusive of Partitions.

	Depth	Thick-	Thick-	W	eight, in	lbs., pe	er Squa	re Foot	
Type of Arch.	of I Beam, Ins.	ness of Arch, Ins.	ness of Floor, Ins.	Arches.	Filling.	Floor- ing.	Ceil-	Steel.	Total.
Ordinary Brick Arch.	8 9 10 12 15	4 4 4 4 4	12 12 13 15 18	40 40 40 40 40	18 18 24 36 54	4 4 4 4 4	4 4 4 4 4	8 8 9 10 11	74 74 81 94 113
Hollow Brick Flat Arch, Ordinary Type.	8 8 9 9 10 10 12 12 15 15	6 8 6 9 8 10 8 12 8 12	13 13 14 14 15 15 17 17 20 20	29 35 29 37 35 41 35 48 35 48	30 18 36 18 30 18 42 18 60 36	4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4	7 7 7 8 8 8 8 8 8 10	74 68 80 70 81 75 93 82 113 102
Hollow Brick Flat Arch, End Construction Type.	8 9 9 10 10 12 12 15 15	8 8 9 8 10 8 12 8 12	13 14 14 15 15 17 17 20 20	30 30 32 30 34 30 37 30 37	18 24 18 30 18 42 18 60 36	4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4	7 7 7 8 8 8 8 8 10 10	63 69 65 76 68 88 71 108 91

In addition to the weight of the floor construction, which is called the dead load, the floors must be designed to carry a live load of sufficient amount, which is usually determined by the purpose for which the building is to be used. The live load comprises the people in the building, furniture, movable stocks of goods, small safes, and varying loads of any character. Large safes require special provision usually embodied in the construction. The following live loads, per sq. ft., are recommended as good practice in building construction:

Dwellings 50 l	lbs.
Offices	
Hotels and apartment houses 70	66
Theatres and churches120	"
and the second s	66
Lofts for light manufacturing purposes 150	66
Factoriesfrom 150	" up.
Warehouses " 250	66 66

The weight of a crowd of people is usually assumed at 80 lbs. per sq. ft., but the weight of a very densely packed crowd may be as much as 120 lbs. The latter load can scarcely occur under the conditions governing an office building. crowds seldom collect in offices except on the lower floors devoted to stores and banking purposes, for which floors proper allowance for live loads is usually made. The actual live loads on office floors are generally much less than given in the preceding table. Messrs. Blackall & Everett, Architects, of Boston, made a careful canvass of the live loads in 210 Boston offices, and found that the average live load for the entire number of offices was about 17 lbs. per sq. ft. The greatest live load in any one office was 40 lbs. per sq. ft., while the average live load for the heaviest 10 offices was 33 lbs. per sq. ft. These figures give some idea of the average actual live loads in such buildings; but the use of such light average loads is not to be recommended, as the actual live load is liable to be concentrated, thus producing an effect greater than represented by the average load. Provision should be made for all possibilities of extreme, either present or future. No single floor should be proportioned for a live load less than those previously given. In high office buildings, hotels, and apartment houses, the foundations and lower tiers of columns may safely be proportioned for a live load of 50 lbs. per sq. ft. on all the floors; but the floors themselves and the upper tiers of columns should be proportioned for the full live loads previously given. Factories, warehouses, and similar buildings should be proportioned throughout for the full live load on each floor.

Building ordinances regulate the design of buildings in several of the larger cities, and the designer must be governed accordingly. The salient features of the Building Laws of New York, Chicago, and Boston are embodied in the following table.

COMPARISON OF BUILDING LAWS.

	New York.	Chicago.	Boston.
Floor Loads, lbs. per sq. ft. Dwellings Hotels and Apartments Office Buildings Places of Public Assembly Stores, Warehouses, Fac-	60 60 70 90	70 70 70 70	70 70 100 150
tories, etc	1 50 up	15 0 up	250up
Allowable Strains, lbs. per sq. in.			
Rolled Steel Beams and	16,000	16,000	16,000
Shapes Tension, Steel Shapes	16,000	16,000	15,000
Flanges, Rivetted Steel Gir-			
ders	14,000 net	13,500 gross	12,000 gross
Shearing, Steel Web Plates.	9,000	10,000	10,000
Shearing, Shop Rivets, Steel.	10,000	9,000	10,000
Shearing, Field Rivets, Steel.	8,000	7,500	• • • •
Bearing on Steel Pins and	20,000		18,000
Rivets Start Ding	20,000	• • • •	22,500
Bending on Steel Pins	20,000	, , , ,	
\$ 1.51	15,200-58-	17,000-60-	12,000
Steel Columns	15,200-50-	and not to exceed	$1 + \frac{l^2}{2}$
		13,500	$36,000r^2$
(1	10,000	10,000
Round Cast Iron Columns.	$11,300-30\frac{1}{x}$	72	72
		$1 + \frac{\iota^2}{600d^2}$	$1+\frac{3}{800d^2}$
(7		
Square Cast Iron Columns.	11,300-30-	10,000	10,000
(r	$1 + \frac{l^2}{l}$	1+-12
Allowable Pressures, tons		800d2	1,066d ²
per sq. ft.			
Granite	72	38	60
Marble and Limestone	50	30	40
Sandstone	30	24	30
Brickwork in Portland Ce- ment Mortar	18	15	
Brickwork in ordinary Ce-			
ment Mortar	15	12	15
Brickwork in Cement and Lime Mortar	$11\frac{1}{2}$		12
Brickwork in Lime Mortar	82	8	8
Clay	ĭ	2	
Dry Sand, 15 ft. thick	3	13/4	
Clay and sand	2	$1\frac{\hat{1}}{2}$	
Good Solid Natural Earth			
Loads on piles, tons each	20	25	• • • • •
0			

EXPLANATION OF TABLES ON SPACING OF PASSAIC STEEL **I** BEAMS.

The tables on pages 122-133 give the proper spacing in feet, center to center, for the principal weights of beams for uniformly distributed floor loads, and furnish a convenient means of selecting the proper size of steel I beams for supporting floors. These tables are calculated for total loads which include the live load that the floor is to carry, and the dead weight of the floor construction.

Suppose that $12'' \times 31_{\overline{2}}$ lb. beams are to be used as joists to carry a total live and dead load of 175 lbs. per square foot on a span of 20 ft., find the proper spacing. On page 128, under a span of 20 ft., the proper spacing is given as 5.6 feet.

When the load is given, and the span and spacing of the beams are fixed, the proper beam can be selected. Thus, for a total load of 175 lbs. per square foot, if the length of the beams is 18 ft., and the spacing fixed at 5 ft. apart, by referring to page 129 it is found that a $10'' \times 30$ lb. beam is required, the proper spacing of which is given as 5.1 ft. for a span of 18 ft.

Girders for supporting uniformly distributed loads may be selected from these tables. Find a girder to support a total load of 150 lbs. per square foot, assuming the girders to be 20 ft. long, and spaced 20 ft. centers. On page 126, for a span of 20 ft. and a spacing of 20 ft., it is found that the nearest beam is a single $20^{\prime\prime} \times 65$ lb. I having a spacing of 20.4 ft.; but it may be necessary to use a shallower girder made of two beams. The same table gives 10.2 ft. as the proper spacing for a $15^{\prime\prime} \times 42$ lb. I, so that if two of these beams are used, side by side, forming a girder, the spacing will be $2 \times 10.2 = 20.4$ ft. If the spacing between girders is given and two beams required, divide the spacing by 2 and select the proper beam, and use a girder made of two such beams.

A floor 40 ft. wide, to carry a total load of 200 lbs. per square foot, has a centre line of girders running lengthwise of the building, supported on columns. The length of each girder is 20 ft. The joists are spaced 5 ft. apart, and their span, allowing for reduction of length by bearing on the wall, is 19 feet. From the table on page 130, $12^{11} \times 31\frac{1}{2}$ lb. beams, having a spacing of 5.4 ft., are at once selected for the joists. Assume 2 beams for each girder, then divide the spacing of girders, 19 ft. by 2, and for a span of 20 ft. a $15^{11} \times 50$ lb. beam, having a spacing of 9.4 ft., is selected, so that the girders required will be made of two $15^{11} \times 50$ lb. beams.

Although the load on this girder is concentrated at three points, the bending moment in this case is the same as if the load were uniformly distributed. This will be the case whenever a joist occurs at each column or support, and the length of the girder is an even number of spacings between joists; but if the length of the girder is an odd number of spacings, the bending moment in the girder is less than for a distributed load. The most economical arrangement is shown in Fig. 1, page 38, where the length of the girder is 3 times the spacing of the joists, in which case the bending moment on the girder is § of that for a distributed load. The tables of spacings may be used for this case in the selection of girders by taking § of the spacing given for the girders and proceeding as above, or by increasing the tabular spacings by 1/8. For example, take the girders in Fig. 1, page 38, for a total load of 150 lbs. per square foot, assuming the length of the girders to be 18 ft., and the width of the building 36 feet. The spacing of the girders will then be one-half the width of the building, or 18 ft. Multiplying this spacing by §, gives 16 ft. as the spacing to be used in the calculation, and the proper girder will be found, from page 126, to be two 12" × 311/2 lb. I's, or a single $15'' \times 55$ lb. I. For a uniformly distributed load the girder required would have been two 12" X 40 lb. beams, or a single 15" × 60 lb. beam, so that the economy of such an arrangement is apparent.

Strict accuracy in the design of girders supporting concentrated loads can only be obtained by calculation of the bending moments, using the actual concentrations of loads.

The spacing varies inversely as the intensity of the loading, so that the tables may be adapted for any intensity of loading. Thus, if it is required to find the spacing for a total load of 250 lbs. per square foot, take the table for 125 lbs., and the required spacing $=\frac{125}{255} = \frac{1}{3}$ that given for 125 lbs.

The spacings on the right of the zigzag line may be reduced so that the deflection will not exceed $\frac{1}{360}$ of the span. If L is the limiting span, at which the shape spaced as given in table has a deflection of $\frac{1}{360}$ of the span, and L' is the given span, then the spacing given for span L' may be reduced by multiplying by $\frac{L}{L'}$. Thus, on page 122, for a total load of 100 lbs. per square foot, the proper spacing for $12'' \times 31\frac{1}{2}$ lb. beams, on a span of 28 ft., is given as 5.0 ft. The limiting span is 24 ft., then the reduced spacing is,

 $\frac{24}{28} \times 5.0 = 4.3$ feet,

and the beams, if used with this reduced spacing, will deflect only $\frac{1}{360}$ of the span under full load.

STEEL I BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 100 LBS. PER SQUARE FOOT. SPACING OF PASSAIC

 												_									_
	30	17.8	15.9	15.8 14.8	13.6	14.4	12.8	11.7	11.1	10.6	11.4	10.5	10.1	8.4	7.1	$\frac{6.8}{9}$	7.1	6.3	5.6	4.6	4.4
	88	$\frac{9.1}{1}$	17.1	00	14.613	15.4	3.7	12.5	6.1	11.4	12.2	11.3	11.610.810.	0.6		7.3	9.2	6.7	ر ن و	4.9 €.5	4.7
		.519.1	18.31	17.01	9.	.51	15.8 14.7 13.7	.41	$\frac{8}{1}$	12.21	1	1.	.61	9.		$\frac{1}{\infty}$.1	<u>.</u>	7.	<u>ن</u>	0
	28	22.020	.718	2 17	.815	17.7 16.5	8 14	4 13.4	815.8	=	$1 \overline{13.1}$	0	4 11			4 7	2	7	9	<u></u>	4 5
	22	22	19.	18.5	16	17.	15.	14.	13.8	13.		13.	12.4	10.	8.7	œ	$\frac{\dot{\infty}}{}$	<u>۲</u>	9	ر ب	5
	56	23.8	21.2	19.7	18.1	19.1	17.1	15.5	14.8	14.1	15.214	14.0	13.4	11.1	9.4	9.0	9.4	<u>ထ</u>	7.4	$\frac{6.1}{2}$	5.8
	25	25.7	23.0	21.3	19.6	20.7	18.5	19.918.216.815.5	16.1	15.3	16.4	15.1	14.5 13.4	_	ري 0.2	8.6	0.2	0.6	8.0	9.9	6.3
		9.	<u>6</u>	1.	<u>ج</u>	5		.21	4.	16.61	17.81	16.41	.7	==		10.6	.11	00	7	00	$\overline{\alpha}$
	24	4 27.9	124.9	123.1	.221	24.5 22.5	21.820.0	$9\overline{18}$	0 17	$1\overline{16}$		$9\overline{16}$	115.7	$2\overline{13}$	$0\overline{11}$	610	0 11	0	ي ص	m .	4
et.	23	30.4	27.	25.	23	24.	21.	139	13	18.1	19.	17.	17.1	.614.213.1		11.6	12.0		6	<u>- 1</u>	-
in fe	22	33.2	29.6	27.5	S5.3	26.7	23.8	21.7	20.7 19.0 17.4	19.8	21.2	19.5	18.7	15.6		12.6	.4 13.2	11.6	10.3	80	$\frac{\infty}{\infty}$
Distance between Supports, in feet.	21	36.4	32.5	30.5	87.8	165	26.2	23.8	22.7	1.7	25.623.2	21.5 19.5 17.9	20.6	.817.1	4.4	3.9	4.4	∞	ಚ.	•	8.9
Supp	20	40.23	.93	.23	.62	32.329	28.82	26.32	25.12	23.921.7	62	.72	22.72	8.8	15.91	15.313.9	17.615.914	.1	.51		$\overline{\infty}$
/een		540	$7\overline{35}$	$\frac{833}{2}$	$\frac{6}{30}$	832	928	1 26	825	523	4 25	2 23	122	9 18	615	9 15	615	15.614.1	912	510	9 9
betw	19	644.5	339.	36.8	333.9	8	331.	23	27.	526.	31.628.4	286.)25.1	320.9	317.6	916.9		<u>115.</u>	<u>113.</u>	811.51	0
tance	18	49.6	44.339.735.9	41.(37.8	39.9	35.	32.7	31.0	29.526.5	31.6	29.2 26.2 23.7	28.0	23.3	19.6	18.9	19.	.517.4	15.4	12.8	6 12.
Dis	17	55.6	9.6	16.0	45.4	44.8:	39.935.631.9	36.332.429.1	51.244.639.234.731.027.8	33.1	35.4	32.7	31.4	1.96.1	22.0	21.1	32.5 28.3 24.9 22.0 19.7	19.5	0.5 17.3 15.4 13.9 12.5	.214.312.	13.6
	16	62.8	56.04	51.9	47.9	50.54	45.1	41.0	9.2	37.4	40.0	37.0	5.4	7	∞	23.9	4.9	22.019	9.5	6.3	5.3
		4	∞	_	.54	5	51.34	7.4	63	.53	.54	0.3	46.340.335.4	.52	28.22	27.22	3	25.02	22.219	4.	4
	15	7	2 63	859	554	057	25	53.646.7	244	8 42.	345	48.342.0	340	433	4 28	227	5 28	7 25	5 22	1118	017
	14	85.0	73.2	767	72.5 62.5 54.5	76.666.057.5	228.80		151	648.	60.652.345.5	148	7 46.	388.	37.5 32.4	231.2	33	3 28.7	325.5	521.	2 20
	13	95.1	6.48	28	33.	76.6	68.2	62.1	59.4	56.	9.09	56.0	53	44.	37.	36.2	37.7	33.3	29.6	24.	23.
	12	12	0	92.3	85.1	80	200	86.8 72.9 62.1	69.7	66.4	71.1		75.063.053.7	62.352.344.638.433.529	14.1	42.4	52.644.2	39.1	41.334.7	8.83	27.2
	11	33		10		07.	95.3	00	82.9	79.0	84.771.1	8.5	5.0	23	52.4 44	50.5	2.6	46.539	1.3	4.228	2.4
	-	Ι.		-	_					9	$\frac{1}{1}$	67	777	75.36	63.55	61.15	63.75	56.34	50.04	41.434	.2 3
	10	161	144		123	129	1.5	105	100	95	102.4	94	6.	3	63	61	63	30	50		33
ight er oot.	We P	0	8 &	3 %	33	75	202	. F.	88	52	75	33	99	200	45	42	55	50	40	35	$31\frac{1}{2}$
am.	Be	06	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	: :	: =	<u>x</u>		: :	: *	"	15		"	"	=	*	15	"	"	"	"
рţр	De	1				1											1		-		-8

SPACING OF PASSAIC STEEL T BEAMS FOR A TOTAL UNIFORMLY LOAD OF 100 LBS. PER SQUARE FOOT (Continued).

	25	6.1		4.6	4.3	4.9	1		3.2								11.00	Maximum neer strain, 16,000 lbs. r square inch. Spacings to the	right of the heavy zigzag line pro-	duce deflections exceeding 340 of	
	24	9.9	6.0	5.0	4.7	4.5	4.6	∞	3.5 5	3.6	e €.5	9.8					9	, 10,0 ings	ag lin	guip	
	23	2.5	6.5	5.4	5.1	4.9	5.0	4.1	ည အ	3.9	3.5	2.9					•	Spac	zigz	excee	
	22					5.4	5.4	4.5	4.1	4.3		3.1				_		nber nch.	heavy	Suoi	
	21	,			6.2		<u>. </u>	$\frac{5.0}{1}$	4.5			3.4		9:		-		ımum ıare i	f the	effect	
		9.58	9.	7.9 6	<u>∞</u>	6.5	$\frac{6.6}{5}$	S	0	5.24	4.64	00	3.6	3.8 8.8	_	_	2	Max r son	tht o	ce det	ode o
	20					9 %:			5			دي	1					De	rigi.	duce	-
:	19	10.5		8.0		7	7.3					4	1	3.1							
ic ic	18	11.8	10.6	∞ 6.	8.4	$\frac{\infty}{\infty}$	ω. 	8.9	6.9		5.7	4.7	4.5	ည က	2.9	2.4					
Distance between Supports, in feet.	17	106.77.759.547.038.131.526.422.519.416.914.913.211.8	11.910.6	9.6	9.4	9.0	9.1	7.6	6.9	7.2	6.4	5.2	5.0	3.9	33	2.7					
Distance between Supports, in feet.	16	.9	.41				10.2	n	$\overline{\infty}$				5.7	4.4	1	3.0					
Supp		914	3 13	811	110	610	7 10		9 7.				=	0			0	n			
'een	15	16.	15.	<u>:</u>	12.	11.	1.		8.9		8.3		9	യ പ		3.4	1	رن ن			
betw	14	19.4	17.6	14.7	13.9	13.3	13.4	11.2	10.5	10.0	9.5	7.7	7.4	r.	8.4	3.9	1	2.7			
ance	13	2.5	0.4	2.0	6.1	5.5	5.5	6. 6. 7.	8.	2.5	1.0	9.0	9.8	6.7	5.6	4.6	4.0	3.1			
Dist	12 13	4.2	6.	.01	.91	1.	.21	.21	16.5 13.9 11.8 10.2	.41	.91	<u>ن</u>		6.2		5.4	4.6	3.6	2.5	2.2	1.
	-	526	423	820	$5\overline{18}$	819	7 18	115	$\overline{513}$	1 14	4 12	510	$\frac{0}{010}$	<u>छ</u>				<u>ಟ</u> ಬ			
	11	31.	33	533	22	21.	21.	18	16.	17.	15.	125	155	9.3	7.8	6.4	IT.	4		9.8	જ
	10	38.1	34.4	3.83	27.2	26.1	56.5	21.9	20.0	20.7	18.0	15.1	14.5	11.3		7.7	6.7	5.5	3.7	3.1	2.5
•	6	7.0	9. 5.	5.5	3.5	છ. જ	2.4	7.0	4.7	5:5	3.0	8.7	7.9	14.0111.3	11.6	9.5	ω 33	6.4	4.5	3.9	3.0
		.54	8	93	5.53	$\frac{\infty}{\omega}$.03	<u>ઝ</u>	<u>ડ</u> ં	.32	0.	.71	.71	.71	.71		1	$\frac{\infty}{1}$			
	8	7 59	253	744	4 42	3 40	5 41	634	831	2,32	929	6	622	1 17	214	8 13	7 10				_
	2	77.	70	58	55.	53.	53.	44.	40.	42.	37	30.	29	23.	19.	15.	133	10.		6.4	
	9	106.	95.670.253.842.534.428.423.920.417.615.313.41	79.958.744.935.528.823.820.017.014.712.811.2	75.555.442.533.527.222.518.916.113.912.110.6	72.653.340.832.226.121.618.115.513.311.610.2	72.853.541.032.426.221.718.215.513.411.7	60.844.634.227.021.918.115.212.911.2	55.5 40.8 31.2 24.7 20.0	57.5	51.6	12.1	10.3	31.4	26.1	21.515.812.1	18.6	14.4	10.1	30	8.9
	ಬ									82.857.5 42.2 32.3 25:5 20.7 17.1 14.4 12.2 10.6	74.451.637.929.023.018.615.412.911.0	60.6 42.1 30.9 23.7 18.7 15.1 12.5 10.5	58.0 40.3 29.6 22.7 17.9 14.5 12.0 10.1	45.231.423.117.7	37.626.119.214.7	30.0	26.8 18.6 13.7 10.5	20.814.410.6	14.610.1		$\frac{8}{8}$
er oot,	o H	40	333	30	27	33	27	25	 ਨ			18 6	1	15		<u>ः</u>		94 €		7,4 1	_
of for for for for for for for for for f	ag	10	"	"	"	*	6	"	"	00	"	"	1	"	9	"	ಬ	"	4	"	

SPACING OF PASSAIC STEEL T BEAMS FOR A TOTAL UNIF DISTRIBUTED LOAD OF 125 LBS. PER SQUARE FOOT.

		_			~~	_				_					_			-				
		30	14.3	12.8	00.	10.9	11.5	10.3	9.3	8	8.5	9.1	8.4	8.1	6.7	5.6	5.4	5.7	5.0	4.4	3.7	3.5
		29	100	13.61	9.	7	12.3			9.5		1	0	9	0	0	50.00	=	4	∞	6	7
			415	613	6 15	511	212	11.811.0	7110			5					53	5 6	7 5		3	0 3
		28	17.6 16.4	15.714.6	15.714.613.612.611.8	12.5	.3 14.2 13.2	H	10.7	10.2	9.8	10.5			7	9	6		٠.	3	4	4.
		27	7.6	5.7	4.6	13.4	4.2	12.7	11.5	1.0	10.5	1.2	10.4	0.0	φ 33		6.7	7.0	6.2	5.5	4.5	4.3
		26	19.01	17.01	.71	5.	3	.61		6.	1.31	12.1			6.	70	c,	3		6.		9.
			$\frac{6}{19}$	417	0 15	~	615	14.8 13.6	4 12	12.811.9	211	150	111	610	9	_	2	2 7	2 6	5	3 4	0 4
		25	20.6	18.	17.0	15.	016.	14.	613.412.4	12.	12.2	13.1	12.1	11.	_	œ	7			6.		
		24	22.3	9.9	18.5	17.0	18.0	6.0	4.6	3.9	.513.3	25.3 22.7 20.5 18.6 16.9 15.5 14.2	13.1	13.7 12.6 11.6 10.7	10.5	<u>x</u>	8.5		٠ ش			
leet.		233	24.32	7.	1.	18.51	9	17.4 16.	15.914.	.21	.51	51	.31	.71	.41	9.6		100	~	9	ಣ	6
II.	feet.		624	721	020	318	153	1 17	4 15	6 15	8 14	915	614	0113	511			.5 9.6	30		$\frac{8}{6}$	
ms,	in	22	26.6	23.	22.0	20.3	21.	19.	17.	16.	15.814	16.	15.	15.	12.	10.	10.	101	9	$\dot{\infty}$	6.	6.
Беа	Distance between Supports, in	21	29.1	26.0	24.1	22.2	23.521.4	20.9	19.1	8.2	17.3	8.6	17.2 15.6 14.3	20.118.116.515.0	15.113.712.5	1.5	1.1	11.6	10.2	9.1	7.5	7.1
to	ddne			7.	<u>8</u> 9.	3			.01	1.	1.	5	91	= = = = = = = = = = = = = = = = = = = =	1.	.71	2.	17	11.31	0	ಣ	$\overline{\infty}$
nte	en 2	20	35.632.1	828.7	29.5 26.6	24.5	725	323	321	200	2 19	200	018	118	7 15	112	13.512.2	112.7	511	.110	80	7 7
၁ ၀	etwe	19	35.	31.8	29.5	27.2	28.	35.	23.:	22.5	21.5	22.	21.0	20.	16.7	14.1	13.	14.	12.	11.	0	
er t	ce b	18	9.7	35.431.8	35.8	0.3	31.9 28.7 25.9	28.5 25.6 23.1	25.923.321.0	8.4	29.926.523.621.219.1	5.3	26.2 23.4 21.0 18.9	23.4	8.6	5.7	12.1	17.6 15.7 14.1	17.6 15.6 13.9 12.5	17.815.613.812.311	10.2	9.7
cent	istan		53	7.3	$\frac{\infty}{80}$	<u>. 6</u>	(S)		<u>2</u>	<u>8</u>	52	4.	<u>ਲ</u>	<u>1</u>	6.	17.615.7	.9	61	.6	8	51	6
ce	Ω	17	244.5	339.7	336	333.9	135.8	331	329	127	926	82	326	325	200	317	16.9	917	315	313	911.5	310
ıstaı		18	50.2	44.8	41.6	38.3	40.4	36.031.9	33. 33. 33.	31.4	29.6	32.028.4	29.0	28.	23.5	19.8	19.	19.9	17.(15.(12.	15.
r D		15	57.1	0.1	7.3	43.6	46.0	1.0	7.3	5.7	4.0	6.4	3.6	3	8.8	3.6	21.7			7.80	14.7	9
Froper Distance center to center of Beams, in feet.		_	65	58.6 1.0	54.347.341.636.8	.04	8.	.14	.03	<u>6</u>	.03	x	.63	.03	7.	<u>8</u>	.92	0.	0.5	.41	.91	.0 13
H		14	9.39	958	54	020	525	347	742	240	333	541	38	337	730	32	924.9	92	323	200	316	6 16
		13	76.0	67.5	62.5	58.050.0	61.5	54.6 47.1 41.0	49.7	47.5 40.9 35.7 31.4 27.8 24.8 22.2 20.1 18.2 16.6 15.2 13.9	45.3 39.0 34.0	48.5	44.838.633.6	42.937.032.228.325.1	35.1	30.0	28.5	30.]	3 6.6	23.	19.6 16.9	18.6
		12	89.5	79.7		68.1	85.571.961.252.8	64.1	0 69.4 58.3 49.7 42.9 37.3 32.8 29.1	5.7	3.1	067.756.948.541.836.4	5.6	50.4	841.935.730.726.823.520.918.616.715.1	35.3 30.0 25.9 22.6	33.928.9	35.430.126.022.6	31.326.623.020.0	27.823.720.4	3.0	1.8
			300	.97	97	90.	57	.36	45	.366.355.7	563.253.1	7.5	75.7 62.6 52.6	0.	8.		4	1.3	.23		.42	.92
		11	101	94	84	081	82	376.3	69 0	3 66	5 63	290	7 62	0.099	60.349.	842.0	.940.	50.942.1	0 37.2		1 27.	4 25
		10	129.	115.	106.	98.	104.	3		80.	76.5	85.	35	73. (2	909	50.8	48.	50.	45.0	40.	33.	31.4
	ight oer oot.	M F	06	8	75	65	75	20	3	09	55	7.5	65	09	20	45	42	35	20	40	3	313
	Jo Sam.	g	50	*		"	18	*	*	"	"	15	*	"	"	"	"	12	*	"	"	=
	4,000	(1			_			-	_			_	_	-	-	_		_			_	-06

	25	4.9	00 0 7 1	က က က	ಟ c 4.0	3.e							0 lbs.	Spacings to the	3 0 of	
	24	ಸ್ 4 ಬ ಹ	0.4.0	က က	3.6	2 00 2 00	2.9	3 c 2 c	. 1			_	16,00	ngs t		
	23	1	& - 양 -	4.0	0.6	3.0	3.1	35 C				-	Maximum fiber strain, 16,000 lbs.	Spaci	exceeding 36	
	-	<u> </u>			೧೯೮		4	- L			-		er s	h.	IS C	
	22	က်က				ာ် က		ب د	1				m fil	inc	ction	
	21	6.9	5.2	4.7	4.8	3.6	ယ (3. C	2.6	2.1			ximu	quare of th	defle	pan.
	20		70 π 30 ≤		5.2			უ ი -	. ! .	2.3			Ma	per square inch.	duce deflections	the span
	19	8.7 7.6	6.4	5.8	70 ∠ ∞ 0		4.6	4.1		2.5						
	18	0 0 4 3	7.1	6.4	6.57 4.57	4.9	<u>ب</u>	4 K		% ∞		0.				_
in feet.	17		3 to 0 1.0		ر ا ا ا	5.5	5.7	0 0 0	. .	3.1	9.8	$\frac{2.1}{1}$				-
rts, in	16	11.91 10.8		. cs	00 a	000		10 d		3.5	2.9	2.4				
Distance between Supports,	15				9.3	7.1	7.4	. 6.6 2.6		4.0	62	2.7	2.4			
een S	14	15.5 13.5 14.0 12.2	11.71		200	0 00 0 03		9.6		4.6	∞	3.2	2.7			
betw		010	6	4 10		<u>i rö</u>		∞ c	<u>: </u>	7	4	<u></u>	(S) F	<u>. </u>		
nce	13	18.0 16.3	13.6	32	000	၁့်က		4 00	- 1	5	4	က ကျ	က္			_
Dista	12	$\frac{21.2}{19.1}$	0.16.0	14.5	314.61		Ξ	01 ω ω	0	6.	5.2	4.5	3.7	<i>i</i> 0		1
	11	25.2	19.0		17.3		16.613.7	12.3	9.6	7.5	6.2	[5.1]		٠ 4 . و	2.5	$\tilde{1.6}$
	10	ro ro	23.0	6.	0,10	. 0	.61	<u> </u>	1100	0.6	7.5	$\frac{1}{2}$. 1	3 C	
		630	423	8 20	921	7 16	4 16	414.0	100			9	19		0 -	
	0	37.6 34.0	28.4	32.5	25.9	19.7	50.	∞ <u>π</u>	14.3	11.2	9.3			- 1	က် က	
	œ	47.6 43.0	35.9	32.7	32.8	25.0	25.920.4	23.218.4		14.1	11.8	9.7		٠ •	4, c.	
	2	62.2 56.2	46.9	42.6	58.342.8	33.6	∞	4,5	23.7	18.5	15.3	2.6	10.9		٥ ر ا	4.0
	9	84.6 76.4	63.94	58.04	58.34	. 1	0.	ಟ ಇ	32.25	$\overline{}$	0	cs.	14.9	0.11	0.0	
		18 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300	<u> </u>	1 20 4	44	2 46	59.541	1 4	2 25	.120	.717.	414	0 1		
	20						.99	50 20 30 50 50 50 50 50 50 50 50 50 50 50 50 50	46.4	36.2	30.	24.	1		10.0	_
ight er to	ьW рq оЯ	9 8	39	52	27	8 25	27	ξ 2 2 2 3	200	15	15	15	13	y C	10 7 10	9
.m.	Bes	10	,	: :	6	= =	00	: :	: 2	*	9	"	2	-	4 =	: "
	-				-			_			_	-				-0

SPACING OF PASSAIC STEEL I BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 150 LBS. PER SQUARE FOOT.

Distance Detect of Defaults, in feet. Distance Defaults, in feet. Distance Detect of Defaults, in feet. Distance Detect of Defaults, in feet. Distance Detect of Defaults, in feet. Distance Defaults, in feet. Distance Detect of Defaults, in feet. Distance Detect of Defaults, in feet. Distance Defaults, in feet. Dist			0	6	9	<u>o</u>	_	9	ಬ	000	4	_	9	0	~	9	~	2	~	જ	-	, ,	6
1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20			3	11.	10.	6	6	9.	$\dot{\infty}$	7	7	7		7	6	v.	4	4.	4.	4.	က	က်	જ
1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20			6	7	4.	\vec{r}	7	ಣ	7		0		7	<u>.</u>		0.		• 1	•			•	7
Distance between Supports, in feet Distance between Supports, in feet Distance Betwe			Q		=	2 0		010				_	<u> </u>					_					
Distance between Supports, in feet. 20			28	3.7	ον. Ο	=	0.4	1.($\frac{\infty}{2}$					•						
1 Open Distance between Supports, in feet 1 Open Distance between Supports, in feet 20				1	_	5	<u>~</u>	8					4	~		<u></u>					9	00	9
Distance between Supports, in feet. Distance be			3	14.	13.	15	11.	11.	10.	တ	6	ထ်	င်္										1
Distance between Supports, in fett. Distance be			9		_		1	8	.4			•	.1										• 1
10 per 1 Deante Center 1 O Center 1 O Center 1 O Center 2 Deants, in feet. 20 20 20 20 20 20 20 2				155	$\frac{3}{2}$		12	312	$\frac{\square}{\square}$	210			3										
10 per 1 Deante Center 1 O Center 1 O Center 1 O Center 2 Deants, in feet. 20 20 20 20 20 20 20 2			25	7.	TO.	4.5	8		સ	1:3	0	0.6	0.6	<u>.</u>					•		•		
Distance between Supports, in feet. 10				61	6	41			<u> </u>	<u>2</u>	-	=		-	20								2
Distance between Supports, in feet. 10	נו:		8	18	16.	15.	14.	15	13	12	Ξ	1	=	=	10	00	~	2					4
Co. Rich Line Co. Rich Lin	ון	i,	က္	.°	3.7	$\frac{1}{\infty}$	5.4	3.3	10	3	9.3	3.1	9.9	6:1	1.4	9.5	3.0	7.7	3.0	7.1	<u>ن</u>	3	<u>:</u>
Co. Rich Line Co. Rich Lin	, 11	Jee		<u>×</u>	8	316]	=======================================	8	215		등				1					
Co. Rich Line Co. Rich Lin	21112	i.	22	3	တ္	∞	9		rð.	4	3	8	4.	<u></u>	<u>.</u>	· 01			•	•	•	•	•
Co. Rich Line Co. Rich Lin	, ה	orts		3			ان	9	7 .	<u>e</u>	्र	5	2	<u>등</u>	\overline{z}	4	9	०१					
Co. Rich Line Co. Rich Lin	5	ddn	CS	24	ร	8	$\frac{1}{\infty}$	13	1	5	15	14	15	14	133	=					~		1
Co. Rich Line Co. Rich Lin	5	n S	0	.8	e9	S. S.	.4		.2	7.5	5.7	6.9	7.1	φ.	5.1	9.6	9.6	.2	9.6		က် မ		
Co. Rich Line Co. Rich Lin	7	wee		200	<u>88</u>	0	6	92	316				9	<u> </u>	7	6	7	$\frac{310}{100}$	81				
Co. Rich Line Co. Rich Lin	2	bet	19	8	9	7.	જ	33	<u> </u>			2	∞	2	9	<u> </u>	=	11.	Ξ	9		•	
Co. Rich Line Co. Rich Lin	Į.	ıce		1.	<u>20</u>	4.	<u>ः</u>	00	7	<u>.</u>			=	<u>.</u>	- -	20	-		=	5	<u>e.</u>	ı.	듸
Co. Rich Line Co. Rich Lin	מווו	star	18	83	8	22	25	98	R	21	8	13	21	13	18	15	<u> 13</u>	12			10	∞	00
Co. Rich Line Co. Rich Lin	י ע	Ü	~	7.1	3.1		w.	8.	3.6	1.2	3.1	2.1	3.6	8.	0.9	7.4	$\frac{4}{6}$	4.1	4.7	3.0	1.5	$\frac{9}{6}$	္ပါ
Co. Rich Line Co. Rich Lin	בוב			8	<u>ਲ</u>	<u>8</u>	<u>33</u>	<u> </u>	<u>30</u>		<u> </u>	<u>82</u>	12/2	0	0	0	2	6	617		<u>::</u>		
Co. Rich Line Co. Rich Lin	1151		16	=	~	34.0	=	: :	<u>~</u>	2	8	24.	8	24.	8	63	16.	15.	.91	14.	≅.	10	•
Co. Rich Line Co. Rich Lin	ન -			64	30	4.	<u>ښ</u>	9	c,	!	2-	<u>e</u>	4	<u>~</u>	6	<u>e</u>	∞	7	6	7	<u></u>	က	
Co. Rich Line Co. Rich Lin	oll c		7	47	42	8	98	38	34		8	28	30	82		33	28			116	14	12	듸
ος πιστιστιστης ος πιστιστης 20 90 107. 88.5 74.4 63.4 80 95.679.0 66.456.6 65.6 66.6 65.6<	1 1		4	1.6	α α	5.5	1.7	4.0	9.2	•	4.1	න ප		8.5		5.6	1.6		1.7	9.1	7.0	4.1	ಬ ಬ
Court Cour				45	648	545			5		$\frac{8}{9}$		43	<u>න</u>	<u>8</u>	2	00	12	12	21	7	3	
обина В В В В В В В В В В В В В В В В В В В			13	83	99				15.	11.	39.		40.		35.	g	<u>છ</u>	24.	35	33	19.	16.	15.
of Beaning			 Q	4	7.	9	7	6	4.	9		ಣ	4	$\overline{\infty}$	0	0	7	က	100	_	C.		
of Beaming Meight Meigh			-	74	99	61	9	59	53	48			47	433	34	34	<u>8</u>	88	ठि	98	<u>83</u>	313	318
of Beam. 10			=	3.5	9.0	8.3	7.5	1.3	3.5	7.9	ر س	2.7	6.4	2.1	0.0	1.5	5.0	3.7	5.1	1:0	7.6	3.8	1:
O				100	$\frac{2}{6}$	7	<u>9</u> 2	33	6	0	95	7 5	30 37	15	55	24	<u>ස</u>	7	50	53	32	<u>8</u>	12
O			10	107	95.	88	81.	86.	76.	70.	.99	63.	89	63.	60.	50.	42.	40.	42.	37.	33.	27.	26.
$ \mathbf{x} = $.100	Ā.			<u></u>		1															
= = = = = = = = = = = = = = = = = = =				ಹ	ŏ	7	9	1	7	99	99	ŭ	1	9	9	20	4	4	20	ŭ	4	ಣ	3
J- 134 - 1-		am.	Be					20					10						0				
and the same of th				ನ	*	*	*	F	"	"	*	*	F	1	•	1	*	"	-	'	`	`	

SPACING OF PASSAIC STEEL # BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 150 LBS. PER SQUARE FOOT (Continued).	
FOR SQ1	
STEEL # BEAMS OF 150 LBS. PER	
SPACING OF PASSAIC STEEL # BEAMS FOR A TOTAL UNIFORML DISTRIBUTED LOAD OF 150 LBS. PER SQUARE FOOT (Continued).	

_				_																		
		2.5	-	- £:	200	7.0	i αί ο ο	3	ه ن ن ن	; c;									,000	ings	ced-	
		9.4	1	* -	200		. O.	0	9 6		G	, c	5 00					-	Maximum fiber strain, 16,000	los. per square inch. Spacings to the right of the heavy zigzag	is exceed.	
		23	x	٠ د د د د	وه ا ا	9 0		0.0) X		9 6	50	.0						er stra	men. he hea	line produce deflections	pan.
		22	0 5	2 ₹	0	1 00	3.6	25	0 01	80.00	0 0	2000	2 6						m fibo	luare t of tl	ce def	tue s
		21	100	0 0		7	3.9	10 7	9 00	3.0	2	+ α	5 CV	0	1.7				aximu	to the right of the he	produ	ខេត្ត បា
		20	500	10	α	. 4 . r.	4.4	4.4	3.6	. m	C.	۲ -	4 10	1				-	M	to th	line	SIII
		19	2	6.4	7.0	7.	200	α		3.7	α α:	7	# 00		.53							_
n ieer	et.	18	100	7	5	بر 6	5.4	5.4	4.5	4.1	4.3	000	; m	-		0	1.6	Ī				
nis. I	s, in fe	17	$\frac{ x }{x}$	5.2	6.6	9 3	6.0	6.0	5.0	4.6	3	· ~			9	6.6	80.	Ī				
near I	pport	16	6.6	0.6		7.1		6.8	ū	5.5	5.4	000	3.0	$\frac{1}{2}$		5.4						
ner o	sen Su	15	11.3	10.5	00 rc		7.7	100	6.5	5.9	6.1	rc rc	5.5	4.3			33	2.0	1.5			
	Distance between Supports, in feet.	14	13.0	11.7	8.6		8.9	8.9	7.4	8.9	7.0		ت ن	6.4	က	3.2	2.6	3	80.			
1 toper distance center to center of Beams, in feet.	stance	13	15.0	13.6	11.3	10.7	10.3	10.3	8.6	7.9			0.9	5.7	4.5	33.77		2.6	2.1			
בני בני	Ď	12	17.6	15.9	13.3	12.6	13.1	12.1	10.1	9.3	9.6			6.7	5.2	4.4		3.1	2.4	1.7	1.4	1.1
aistai		11	21.017.615	19.0	15.8	15.012.610	14.4	14.4	.529.822.818.014.612.010.1	13.311.0	11.4	10.2	φ 63.	8.0	6	5.5	4.3	3.7	9.9	5.0	1.7	1.4
OPCI		10	25.4	22.9	19.2	18.1	17.4	17.5 14.4	14.6	13.3	13.8	12.4	10.1	9.7	7.5	6.3	5.3	4.5	3.5	2.4	€ 1.3.	9.1
1 7		ග	7.31.3	28.3	23.7	22.4	21.5	9.12	18.0	16.5	17.0	15.3	12.5	11.9	9.3	7.7	6.4	5.5	4.3	3.0	8.6 6.6	ا م
		œ	39.7	35.8	53.0	28.3	27.2	27.3	85.8	20.3 16.5	21.6	19.4	15.8	15.1	11.8	8.6	8.1	7.0	5.4	∞ ∞	ر د د د	2. 0
		~	51.8	46.8	39.1	37.0	35.5	35.7	80.8	.027.2	28.5	25.3	20.615.8	19.7	15.4	12.8	10.5	9.1	7.1	5.0	4.0	5.5
		9	70.551.839	63.7 46.8 35.8 28.3 22.9 19.0 15.9 13.6	53.2 39.1 29.9 23.7 19.2 15.8 13.3 11.3	50.337.028.322.418.1	48.4	48.635.7	40.5	37.0	38.3	34.4	28.0	26.9 19.7 15.1 11.9	20.915.4	17.4	ಚ		9.6	6.8	0. 20. r	d. 4
		20							Ť		55.238.328.221.617.013.8	49.634.425.319.415.312.4	40.4	38.7	30.5	35.117.412.8	20.614	17.8	13.9	9.7		0.0
	eight oot.	M.	40	33	30	27	25	27	25	21			$\frac{1}{\infty}$		15		12		93	10	100	0
	epth of sam.	R	10	"	"	"	"	6	11	"	00	"	*	7	2	9	"	ಸಾ	*	4	"	,,
	-			-		-	_	_	_			_	_									60

SPACING OF PASSAIC STEEL I BEAMS FOR A TOTAL UNIFORMLY

				_	_				_												_	
		0	S	7	8.4	∞	35	ೞ	7	4.	-	rö	6.0	∞	$\dot{\infty}$	0	0:	0	3.6	छ	9.	3
		30	10.2	G	00	7	000	7	9	6.	9	9	9	70	4	4	က	4	က	ಣ	ભ	CS.
			-	~	0	ಣ	100	200	_	00	10		- #	<u> </u>	_	00	<u> </u>	~	00		00	_
		29	0.	6	9.0	on:				6.8		7						1 .	ლ ლ			
		-					-											1				
		28	-	.5		 0	4.			<u>ښ</u>			6.					9.	4.1	9:	0.	6
		લ	11	10		∞	ြ	Œ	-	~	~		9			4		4	7	က	က	CS
-		~	12.6	छं	4.	9 .	-	0.		6.			4.				œ		4.			
		27	12	11	2	0	2	On	∞	1	7	∞	1	1	10	70	4	70	4	ಬ	ೞ	က
-		~	9	-	cv.	4	5	~	0	20	-	1	0	~	4	4	3	4	00	a	2	ಣ
		28	13.6	12.1	Ξ.	10.	6.01	တ်	\dot{x}	$\dot{\infty}$	∞	∞	$\dot{\infty}$	~	6.	v	٠.	5	4.	4	ಣ	က
			7.			S.		2	9	જ	~	7	~	ಣ	0	00	9	$\overline{\infty}$	_	9	00	9
		25	14.	13.1	જં	11		10.		6	•	6	$\dot{\infty}$	$\dot{\infty}$	6.	Ö	50		30			
			=	<u>2</u>	$\frac{2}{12}$.	2 1	$\frac{\infty}{1}$	4		0	73	<u>। २२</u>			ເລ				<u>ග</u>	_	=	
		24	6.6							0.	g.	3:			2				5.6			ایّ
ני.		CV	15.	7		12	0 12.		_	$\overline{}$		=										
roper Distance center to center of beams, in feet.		23	.4	15.514		3		3	e:	00	<u>ن</u>	1.	ુ લ્						=			•
=	eet.	S	17	15	14	5 13.		27	11	10	2	=	$\overline{}$	0	00	9	9	5	9	ro		4
5	n fe	0	0.	6	1-		00	60	.4	$\frac{1}{2}$	<u>ن</u>		3		6.				9.			9
	Supports, in feet.	22	5	91	15.7	14	15	13.	12	11	I	12	11.2	10	$\dot{\infty}$	1	7	1	6.	20	7	4
נָל	rts	-	$\overline{\infty}$	5		<u></u>	00	0	9	0	4	300	8	$\frac{1}{\infty}$	$\overline{\infty}$	०२	0	3	ಣ	10	7	급
7	odc	212	20.	$\frac{1}{8}$:	15.	16.	14.	13.	13.	12.	5	12.		6			∞		6.	20	20
5	Inc	-	9	=======================================	등	2	3.51	.5 <u>.</u>	-	3	7	61				_			0		0	03
5		20	3	0.5			m	0	10					<u>2</u>	0.8	6	•		œ			
	ree	-	83	<u>~</u>	13	17	20			14	=======================================	14	13	=	크							
5	etv	19	7.		0	.4	.51	<u>ج</u>	9:	6.	Ξ	3	3	7:	6:	0.	.7		·.9			
2	Distance between	-	25.4	22.7	21.0	13	50	$\frac{1}{2}$	16.0	15	15	16.9	15.	7	11		6		ထ်			
5	nce	80	33	25.3	ಬ	9.	22.8	ೞ	18.5	17.7	<u>o</u> .	7	16.7	16.0	13.3	11.2	œ	ः	<u>.</u>	$\frac{\dot{\infty}}{}$	<u>ن</u>	6.
Ħ	sta	18	82	3	23	21	3	8	188	17	16.	00	16	16	133	Ξ	10		6			
5	Ü		00	4	<u></u>	<u>छः</u>	9	∞	∞	∞	0	00	3-	0	0	20	$\overline{\overline{}}$	9	-	0	<u>Q</u>	$\overline{\infty}$
ט		17	31.	28.4	26.3	24.	25.6	33	50.	5	18	20.	18	17.9	14.9	S	12.	જ	11.1	<u>o</u>	$\dot{\infty}$	~
			9	0.20	<u>CV</u>	4.	0	<u>CV</u>	3	4	등		_	2	$\frac{1}{\infty}$	212.5	5	10	00	0	cs.	
12		16	5	35.0	29.	27.	28.9	25.	23.4	22.	21.	22.6	21	20.	16.	14.	13.	14.			6	
5			35	<u> </u>	€ (N)	3	35	<u>∞</u>	3	<u>Q</u>		<u> </u>	<u>e</u>	<u>Q</u>	=	=	51	0	.3	71		0
5		15	œ.	3.4	00	\Box	32.9	<u>ن</u>	3.7	5.5	स स	3.0	1.0	23.0	3.	3.1		3.2	-	~		Ξ
7			40	8	33	<u> </u>	3	<u>ಸ</u>		<u>段</u>	24	92	3	ં	19	16	15		14	22	10	1
1		14	∞	$\dot{\infty}$	∞	7	1	9.	9.	ं	9	6.	9	4.	0	3	00	9.	4.	9.	-	7.
		1	46	41	38	35	37	33	8	53	27	53	27	98	<u>સ</u>	18	17	100	16	914	0 12	=
		~	8	20	0	₹.	1	0	5	6	<u> </u>	9.	0	~	3	518	7	.5 18.		6		ಣ
		13	54.	48.	45.	41.	43.	39	35.	8	33	34	33	8	ह	21	50	12	19	816.5	14	6 13
					$\frac{\infty}{4}$	$\frac{64}{6}$	<u>8</u>	<u>00</u>	7	$\frac{\varpi}{\infty}$	<u>6</u>	1	<u> </u>	<u> </u>	6	<u>S</u>	<u>S</u>	3	3	00	4	9
		12	93	.856.9		48.	51.	45.	-	39.	37.	40.	37.			32	24.	25	22.3	19.	6.	15.
			963	30	<u>00</u>	94	100	54	54	43	<u>8</u>	4	3	$\frac{8}{8}$	3	00	<u>ಜ</u>		9	믕	61	등
		11	2	7			نا	5.5	9.6	47.4		3	4.7			0	•	0	6.			
			375	0.67	0 62	57	19	54	49	4	345		144	342	35	<u>330</u>	38	130	3	623	7 119	4 18
		10	00.	3.0	3.6	0.0	9.9	6.3	0.0	57.3	9.1	3.	:	$\frac{1}{\infty}$	<u>0.</u> %	3.3	6.1	3.4	32.2 26.			
			9	88	76	20	133	65	9	5	54	58	54	51	43	36	34	36	3	38	83	33
	.100	F		_			1,0	_	,_			100	,_			,	0)	100			10	-67
	111811	J 44	ವ	$\tilde{\infty}$	55	6	12	7	6.5	99	TO.	2	53	छ	$\tilde{\Sigma}$	4	45	55	50	4	ñ	3
	ight		1				-					1			_			1				_
	of am.		0	*	*	*	$ \infty $	=	*		*	15	"	#	=	"	*	2	"	=	=	
	uad:		ನ	1	7	~	-	-	'	-	`	-		-	-			1		-	`	"
		4	-				-			_	_		-		-	-		-	-	_	_	- ⊘

SPACING OF PASSAIC STEEL I BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 175 LBS. PER SQUARE FOOT (Continued).

	1		,	_		_						_								_		
		252	200		9.6	. 0 . 7.	4.	2.4	5.0	1.8									0 lbs.	pro-	360 of	
		24	000	2 4	9.9	2.7	9.8	9.6	2.5	0.8	2.1	<u>x</u>	1.5						Maximum ther strain, 16,000 lbs.	right of the heavy zigzag line pro-	ling 3	
		23	4.1	_		1 00		8			S	2.0	9						straın, Spac	zigza	excee	
		22	4.5							2.4			<u>∞</u>					,	tiber:	heavy	ions	
		21	6.4					3.4			2.7	_	_	6.1	73				umum	fthe	deflect	span.
		20	5.4	_				3.7	3.1	ာ			ೆ. ಭ.	2.1					May	ight o	duce deflections exceeding	
		19	6.0		_		4.1				3.3		2.4		.8							
reet.	feet.	18	6.7		5.1		4.6	4.6	3.9		3.6	30		2.6		1.7	7.					
1 Jopes distance center to center of beams, in feet	.E.	17	7.5						4.3		4.1	3.7			2.2		1.5					
Sean	Supports,	16	8.5		_		∞	5.9 5		4.5 4	4.6 4	4.1 3			2.5			<u> </u>				
i	dine	_							4			7		_		2.1	_					
ler	en S	15	9.7	8.7	7.3	6.9	6.6	6.7	5.6	5.1	5.3	4.7	$\frac{8}{3}$	3.7	2.9	2.4	2.0	1.7	1.3			
neo o	Distance between	14			8.4	7.9	7.6	7.6	6.4	5. 80	0.9		4.4	4.2	က က	2.7		2.0	1.5			
ner r	ance	13	2.9	11.6 10.0	9.7	9.5	$\frac{\infty}{\infty}$:				6.3		4.9			9.8	2.3				
i ce	Dist	12	.444.434.026.921.818.015.112.911.1	3.71	4	∞	4.	0.4	œ .7		C)	4	[0.0]	5.8	4.5	7	3.1		2.1	1.4	1.2	1.0
Stanc		11	3.01	54.640.130.724.319.716.213.7	45.633.525.720.316.413.611.4	43.131.724.319.215.512.810	14.9 12.3 10	2.4		9.4	00	$\frac{\infty}{\infty}$			تن ين	4.4	3.7	<u>~</u>		1.7		3
3			8	=======================================	4 15	515	915	0 5	510	7 .							4.	00		=		7
2		10	21.	19.	16.	15.	14.	5	12.	Ξ.	11.	10.6	œ	ω .::	6.5		4.	က ထ	က	જ	00	-
7		6	6.9	4.3	0.3	9.5	18.4	41.630.623.418.515.012.4	34.7 25.5 19.5 15.4 12.5 10.3	31.723.317.814.1	47.3 32.8 24.1 18.5 14.6 11.8	$\overline{}$	0.7	33.2 23.0 16.9 13.0 10.2	0.œ	9.9	5.5	4.7	3.7	9.8	3.50	1.7
		_	32	55	3	31	8	4	5	8	5	61	5	0								
		00	34.	30.	S.	24.	23.	83	19.	17.	18	16.	<u></u>	13.	10.1		6.9	0.9	4.6		⊗ ∞	
		2	1.4	.1	3.	.7	ري ت	9.0	5.5	•••	-	17	.7	6.	<u>ु</u>	0:	9.0			4.3	3.6	ਨ
			7	9	<u>88</u>	<u>등</u>	53	989	<u>7</u>	$\frac{2}{5}$	8	<u>2</u>	0	0116	<u>::</u>	든		5				
		9	99	54.	£5.	£3.	41.530.523.3	11.	34.	31.	32.8	~; 63	24. (33	<u>∞</u>	4.5	12.3	0.0	တ က	ت. ش	ت 0	~; ~;
		2	_				7	7	• •	••	8	2	34.624.017.713.510	<u>ड</u> ें	25.9 18.0 13.2	21.5 14.9 11.0	17.7]		11.9		7.1	
	*200										47	45	34	89	32	21	12		_			- 1
	eight ser soot.	i	40	88	30	27	25	27	25.	12	22	6 6 6 7	18	30	15	15	15	13	<u>ಲ್ಲ</u> ಬಿ4	10	121	و:
	epth of sam.	B	10	"	"	*	"	ာ	"	*	∞	"	"	7	"	9	"	ಒ	"	4	*	//
		4											1									•0

SPACING OF PASSAIC STEEL & BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 200 LBS. PER SQUARE FOOT.

Distance Derivative Center to Center 1 Distance between Supports, in feet. Distance Between Supports,	_									_				—									-1
Distance between Supports, in feet. Distance Be		{	30	6.8	8.0	7.4	8.9	3.5	6.4	တ်	5.6	5.3	5.7	ر د د د	5.0	4. €:		3.4				•	•
Distance between Supports, in feet. 10								1	0	(N)	0	<u> </u>											
Distance between Supports, in feet. Distance be			8											_									1
Distance between Supports, in feet. Distance be			88											•	•	•						•	
Distance between Supports, in feet. Distance Be	ļ			_			1																
Distance between Supports, in feet. Distance be			Ś	_			∞					9						1					
Distance between Supports, in feet. Distance be			98	1.9	0.6					•		7.1	-				•	•					
17 18 18 19 19 19 19 19 19			!									1						6					
Distance between Supports, in feet. Distance be			સં	_	$\overline{}$	10			တ	<u>o</u>									5	4	4	က -	က
Distance between Supports, in feet. Distance be			42	3.9	25.55	1.5	0.6	1.2	0.0	9.1						•							3.4
Distance between Supports, in feet. Distance Be	100		!			61	61	2	_			- 1											
Control Cont			લ				11	12	10	<u></u>													က
Control Cont	(211)	feet	22	0.9	4.8	3.7		3.4	$\frac{1.9}{1.9}$		•	•				•							4.1
Control Cont	רבים	.5		200	3	_		1	_	91	-											~	4
Control Cont	5	orts	8		16.	15.		14	<u> </u>	Ξ	11	-	11	10	_								
Control Cont	5	ddn	2		7.9	6.6		6.2	4.4	3.1		-	2.8	1.8	1.3	•		•					•
Control Cont				3	91	41	0		0	5	6	CV	الصا	_									
Control Cont	3	twe	18	22.	139	128	17.						14.	<u> 13</u>	<u>2</u>	<u>110</u> .	<u>∞</u>	∞					5
Control Cont	ובכד	e be	8	00	2.1	0.5								9	9	9	$\dot{\infty}$	4.					
Control Cont	ן כנו	tanc		30	$\frac{60}{\infty}$	<u>8</u>	2	4	0	2				41	7	0							
Control Cont	מ	Dis	1.7	27.	24.	23.	21.	22.	8	<u>18</u>	17.	16	17.	19	15.	<u>13</u>	Ξ	10.					
Control Cont	Sta		91	1.4	3.0	0.9		5.3	3.5	0.5	9.6			о. Б	7.7	4.7	2.4	1.9	2.4			•	•
Control Cont	5			73	<u>8</u>	<u>8</u>		00					00	0	2	7	-		21				
Control Cont			15	35	31	53	27	88	25.	33	22.		22	21	8	9	14.		14	22	_		
Control Cont			14	1.0	9.9	3.9	1.3		9.4	6.8	5.6		7	4.1	3.1	9.2	6.2	•					
Continue				54	43			3	<u>1</u>	<u>3</u>		3		0	00	3		=	00	7		1	
Continue			13	47.	42.	39.	36.	8	34.	31.		28.	30	38	26.	33			∞	9			=
Company Comp			03	∞		3.2		4.9	0.0	5.5	8.	3.2	5.6	2.9	\vec{v}	ञ	2.0	1.2	3.1	9.5	7.4		
of Beam: Neight 10					348	040		54	74(430		5	2	3		=	3	22	(C)	8			
of Beam. Neight Weight We			11	19	55	55.	50.	53.	47.	43.	41	33	42.	39		3	26.		26.		20.	17	116.
10 10 10 10 10 10 10 10			0	9.3	1.7		1.3	1	7.7	3	0.2			7.3	3.3	7.7	1.7	0.6	1.8	8.1	$\tilde{5}.0$		-
10 B = 1		'100		i	7			1					1				ಣ	က	1				_
= = = 0 Beam.		19	d.	90	8	35	65	75	20	53	09	55	75	65	09	50	45	42	55	50	40	35	31
								1~		_			1.0										
				3	*	"	٣	18	"	1	1	"	1	*	1	"	"	*	F	*	"	-	= _×

LBS. PER SQUARE FOOT (Continued). BEAMS FOR A TOTAL 1 SPACING OF PASSAIC STEEL I

_											_											-1
		25	3.0	ς; ∞	2.3	2.5	ı											Maximum flor etrain 16 000 lbs	Spacings to the	right of the heavy zigzag line pro-	360 01	
		24	3.3	3.0	2.5	2.4	CS	2.3	1.9	1.7	1.8	1.6	1.3					16.0	ings.	ng lin	S	
		23		ლ ლ				2.5	$\frac{2}{3}$.	1.9	2.0	œ	1.4					ctrain	Spa	zgz	Succount	
		22		3.6				2.7				<u>ာ</u>	9				_	fiber	nch.	leavy	SIIO	
				_		_	0				_			9	က			21.00	are ii	the h		
		21			_	_	<u>ش</u>		2.5		3 2.3		1.7	_	_		_	الم د	nbs	ht of	span	٠
		20		4	3.6		3.3	 	23.7	<u>ं</u>	5.6		_		1.4				per	E T	the	
		19	5.3	4.8	4.0	ယ ထ	3.6	3.6	3.0	% .8	2.9	5.6	2.1	2.0	1.6							
Hoper Distance center to center of Deaths, in rect	ţ	18	5.9	 			4.0	4.0		3.1	3.2	2.0 0.2	33	2.5	1.7		1.2					
12,	Distance between Supports, in feet.	17		6.0				20	$\dot{\infty}$	5.	9	<u>ි</u>		ಬ	0:	9:	က			_		
	orts,		4	~	_					6	_	_	ભ ⊖	ω σ	<u>ः</u> ः		5					-
3	Supp	16		_			\(\frac{\infty}{\sqrt{\sq}}\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}			4 3.9			<u></u>	2	<u>ં</u>		7.	100	<u>ः</u>			
1711	cen ?	15		7.6			ت. ا	ب	4	4.	4.6	4.1	ر م	3.	જ		1.7	<u>-</u> :	_			
2	betw	14		$\frac{\infty}{\infty}$		6.	6.7	6.7	5.6	5.1	5.3	4.7	ය ල	3.7	2.9	2.4	2.0	1.7	د :			
1011	ance	13	11.3	10.2	w w	3.0 0.0	7.7	3.	6.5	5.0	6.1	5.5	4.5	4.3	3.3	8.8	જ જ	5.0	1.5			
100	Dist		13.21	11.91	10.0	7.	7	_		6		20	ಣ	0	6.		2.7	2.3		1.3	•	<u>.</u>
allo		12	7 13	211	910		8. C					$\frac{7}{6}$		<u></u>	3		<u>ु</u>	8			ا	0.
List		1	15.7	14.2	Ξ	11	2		0.6		$\dot{\infty}$	7	6.	6.	4.	33	**	જ	જ		,,	
120		10	23.519.0	26.921.217.2	22.517.714.4	813.6	13.1	13.1	13.510.9	10.0	10.3	9.3	7.6		5.7	4.7	3.9	ಬ ಬ	3.6	1.8	9.7	1.3
110		-	5.	2.	.7		16.11	35	<u></u>	ಚ	90	11.5	9	9.0	7.0	∞	<u>∞</u>		3	2.3	1.9	. 2
		6	33	121	517	$\frac{2}{16}$		5116	==	$6\overline{12}$	2 12.	<u>2</u>	<u>ထ</u>		$\frac{\infty}{\infty}$	3. 5.	0 4	}	. <u>ا</u>			- 1
		ထ	29.8	36.9	33	21.216	20.4	20.516.	17.1	.4 15.6 12.	16.2	14.5	Ξ.	-	$\dot{\infty}$		6.	5.2	4.	જ	2.4	-
		1	38.9	5.1	39.929.3	27.78	26.7	3.8	.4 22.3 17	0.4	1.1	0.6	5.4	.214.8	1.5	9.6	7.9		5.3		3.2	2.5
		_	938	47.835.1	<u> </u>	<u>25</u>	.326	4 26	4	27.8 20	₹ <u></u>	$\frac{\infty}{2}$	0.15	100	.7111		7	ł				
		8	52.9	47.	39.	37.7	36.	36.4	30.	27.	28.721	25.	.321.	20.	15	8 13.1	10	9.3			4.3	
		2									11.4	37.225.819.0	30.3	29.020	97.6	18.8	15.5	13.4	10.4	7.3	6.3	4.9
	ight er oot.	d.	40		30	23	25	27	25	21		33		1	15		12	13	_	10		9
	pth 3G	Re	10	"	"	"	"	6	"	"	œ	"	"	7	"	9	"	2	"	4	"	W

SPACING OF PASSAIC STEEL I BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 225 LBS. PER SQUARE FOOT.

_																						-1
	1	30	7.9	7.1	9.9	6.1				5.0		5.1	4.7	4.5	ر ا ا	٠٠. ١٠٠	3.0	ა ლ				
		53	χο 1 Γυ (6.8	6.1	5.6	5.3	5.1	5.4	5.0	8.4	4.0	3.4	3.5	လ 4.				7.7
		28	9.1	ia	0.0	0 9.0				ان ا		٠ċ	υ.	٠	4.	က်	က	3.6			35 c	7.7.7
		22	0 0	$\dot{\infty}$	χ.	7.5			•	6.1		6.3	ი დ	5.5	4.6	က က	3.7	က က	3. 4.	ان ان	3, 5	7.7
		56	9.01		o o					9.9		တ်	6.	6.	5.0	4	4			ر ا ا	33.0	آ ج
		25	11.4	?	ဘ ျ	$ \hat{x} $				7.1					5.4						හ. ව. ර	
		24	12.4		10	9.5	$\overline{}$	$\dot{\infty}$	$\dot{\infty}$	7.7	-	2	1	1	₹. 80	4	4.7	4	4.		က်	
	feet.	23	13.5	12.1	11.2	10.3	10.9	6	$\dot{\infty}$	8.4	∞	∞	1	۲-	6.3	rc.		٠ <u>٠</u>	4		က်	
	ii.	22	14	<u> </u>	25	11.3	11.9	10.6	9.	9.2	$\dot{\infty}$	6	$\dot{\infty}$	ò	6.9	v.	- 1	20	ر ا	4		· ·
	Supports,	21	16.	14.	<u> </u>	12.3	13.0	11.61	10.	10.1	9.	10.3		ဘ	7.6			6.	က်		ᢖᢆ᠂	4.0
	sen St	20	17.8	5	14.	13.6	14.4	12.8	11.7	11.1	10.6	11.4	10.5		8.4	7		7			4.	
	between	19		17.	16.	15.1	15.9	14.2	12.9	12.4	11.8	12.6		11		~	1-	~	6.	9		4
	Distance	18	3	19.7		16.8	17.7	15.8	14.4	13.8	13.1	14.1		12.4	610.3	8.7	8.4	∞	-		ر ا	- 1
	Di	17	24.7	22.1	20.	18.8	19.9	17.7	.2 16.2	15.4	6 14.7	15.8			-	0	0	9	$\dot{\infty}$		တ်	
		16	27	24.9	23.1	21.3	22.5		18	17.415	9	17.8	16.	15.71	6.3		10.6	11	6	$\dot{\infty}$	2	ဖြ
1		15	3	$\frac{8}{2}$	26.3	24.5	25.6		20.	19.81	18	20.2	18.7	17.9	14.9	12.5	12.1	13.6	11.1	9.9	φ ς;	7.7
		14	36.4	32.5	30.2	27.8	29.3	97	3	3		23.2	21.	20.6	17.1	14.4	13.9	14.4	3.23	11.3	9.4	80.5
		13	42.2	37.7	35.0	32.2	34.0	30	27	: 2	3	26.9	24	33	19	616.7	16.1	16.7	14		8 10.9	10.3
		12	49.6	44.3	41.0	37.8	39.9	3	32.4	31.0	29.5	31.6	53	28	7.23.3	19.		19.7	717.4	15.	12.	112.1
		11	59.0	352.7	48.8	0.24	47.5	67	38.6	8.98.9	535.1	37.63	3.5	333	27	23.3	222.4	323.4	020.7	.218.4	4 15.2	114.4
		10	71.4	63.8	59 1	54.5	57.5					45.5	42.0		33	28.5	27.2	28.3	25.0	22.5	18	17.4
	ght sr ot.	isWei oq oʻi	8	ã	75	3	75	2.5	. is	9 9	35	35	E	88		45	42	55	50	40	35	$31\frac{1}{2}$
	·m	Der Der		*	"	n	α σ) ×	: :	: *	: =	15) *	: *	"	"	"	15	"	"	"	"
	140	L-~U	1				1					1	_		_	_	-	-	_			-8

SPACING OF PASSAIC STEEL I BEAMS FOR A TOTAL UNIFORMLY DISTRIBUTED LOAD OF 225 LBS. PER SQUARE FOOT (Continued).

8.88 7.40 9.00 to the right of the heavy zigzag Maximum fiber strain, 16,000 lbs, per square inch. Spacings line produce deflections exceeding 350 of the span. % 0.≈ 0 1.3 CS 23 33 જ જ 5 1.9 3.5 2.4 4 4. જાં CV2 သ သ ထ က 2.9 2.7 8.8 0.8 - -- -ئ تن 21 છ CS 3.5 9.9 3 0 3 0 2 4 0 ∞ 3.0 % % 200 € 3.5 5.5 ಬ ಬ 80 80 80 80 77 80 2.5. 1.9.3. 1.9 1:8 3 00 Proper Distance center to center of Beams, in feet, 3.0 ₩ ••• 3.6 3 2.6 2.1 ಅ 1 0 ∞ 9 3 જાં Distance between Supports, in feet 35 જ 5.9 ಸ್ ಟ 4.0 3.4 2.2 ರಾ ಣ 4 03 20 જાં જાં 0.9 5.0 10 4.6 က ထ ಜ ಪ 888 888 888 2.5 2.5 33 4.3 3.0 1.5 S **Q** C. 3.7 0000 15 ર જ 6. LQ. 00 5 . 3.€ 7.8 6.5 6.2 5.0 5.0 4.7 4.2 က က 1.8 $\frac{8}{6}$ 2.1 7 4 33 6.9 S 5 7.6 7:1 က် က က က က က က 5.4 ည တ 3.0 4.9 .034.526.420.916.914.011.810.013 જ 4 .531.223.918.915.312.610.6 30 $\frac{\infty}{2}$ $\frac{\infty}{1}$ 5.7 4.5 0, 0, 0, 4 8.7 ∞ 4. 3. 12 6. 9 ပ် မ *လ* က ထ 3.0 5.6 5.8 5.8 ۍ ښ S 2.5 1.3 0 11 $\begin{array}{c} 42.5\,31.2\,23.9\,18.9\,15.3\,1\\ 35.5\,26.1\,20.0\,15.8\,12.8\,7\\ 33.5\,24.6\,18.9\,14.9\,12.1 \end{array}$ 0.00 3.0 0.0 33 0 0 0 0 3 5 7 3 5 5.0 6.4 CS 3.4 10 14.31 27.019.815.212.0 80 ω 0. 6.2 3.5 00.7 2.0 32.423.818.214.4 911.0 36.825.5 18.8 14.4 11.4 33.0 23.0 16.9 12.9 10.2 0 6.5 5.4 .223.718.1 26.9 18.7 13.7 10.5 13.210.18 . e: 18.113. 14.010.3 00 70 ಣ CS ₹ 1 က 4 લ જ 17.9 ∞ ∞ 20 10 9 400 25.8 13.7 6.5 7.4 4.4 70 pe**r** Foot. 10 7½ 6 2 25,53,28 **40** 88 88 88 32,53 252 20 Weight Веат. 10 ~ = 9 > 10 > = = ∞ = = × 30 > > = Depth

RIVETED GIRDERS.

Riveted girders are used where rolled beams are not sufficiently strong for carrying the load. Riveted girders with single webs, known as plate girders, are more economical than those with double webs, known as box girders; but the latter are stiffer laterally, and should always be used where a great length of span requires a wide top flange for lateral stiffness. If the girder is not held in position laterally, the width of the top flange of the girder should be at least $\frac{1}{20}$ of the span, otherwise the section of the top flange should be increased as follows:

Let A = the gross area required in the top flange, the girder being supported laterally.

A' = the gross area required in the top flange, the girder being unsupported laterally.

 $b = \text{length of span} \div \text{width of flange, both in inches.}$

Then
$$A' = A \left(\mathbf{I} + \frac{b^2}{5000} \right)$$

The web of the girder must be made of such a thickness that the vertical shearing strain shall not exceed 7500 lbs. per square inch on a vertical cross section of the web. This shearing strain is greatest at the supports; and, if the load is symmetrically applied, is obtained by dividing one-half the load upon the girder by the area of the vertical cross section of the web. In addition, the web of the girder must either be of sufficient thickness to resist any tendency to buckle, or else it must be stiffened by means of vertical angles riveted to it at intervals not exceeding the depth of the girder. Such stiffeners must be used when the shearing strain, per square inch, exceeds the strain allowed by the formula:

Allowable shearing strain per square inch =
$$\frac{12000}{1 + \frac{h^2}{3000 \ t^2}}$$

in which "h" represents depth of the web between flanges of girder, and "t" the thickness of one web plate, both in inches. The stiffeners should always reach over the vertical

sides of the angles forming the chords of the girder, and there should be filling pieces between the stiffening angles and the web plate. In every case, whether intermediate stiffeners are used or not, the web at the ends of the girder, where it rests upon supports, should be reinforced by stiffeners so that the reaction of the support may be resisted by an increased section. These end stiffeners should be considered as columns taking the entire load upon the support and transferring it to the web of the girder; and should have sufficient rivets connecting them to the web of the girder to transmit the total reaction at the support. The strain upon the end stiffeners should not exceed 15,000 lbs. per square inch of cross section. Stiffeners should always be used at any point where there is concentration of heavy loads; the duty of the stiffeners in such cases is to prevent buckling of the web, and to transmit the load to the web by means of the abutting areas and the rivets. both of which must be sufficient for the purpose.

The rivets used should generally be $\frac{3}{4}$ " or $\frac{7}{8}$ " diameter, the latter size being preferable and often necessary where girders are to carry heavy loads. Rivets should never be spaced exceeding six inches centers; but in all cases the pitch of the rivets must be closer at the ends of the girder. At any point of the girder there must be sufficient rivets connecting the web to each flange, in a length of flange equal to the depth of the girder, to transmit the total shear at that point. At the end of the girder there must be sufficient rivets connecting the web to each flange, in a length equal to the depth of the girder, to transmit the end reaction of the girder. calculation of rivet spacing for girders used in buildings it is customary to allow 9,000 lbs. per square inch for shearing and 18,000 lbs. per square inch for bearing on the rivets. plate girders the rivet pitch will usually be determined by the bearing value of the rivets, and in box girders by the shearing value of the rivets. The shearing and bearing values of rivets, for use in building construction, are given on pages 254-255.

Plate girders should never be made too shallow, on account of the deflection; they should have a depth of not less than one-twentieth of the clear span; if built shallower, more material must be put in the flanges so as to reduce the strain per square inch, and the deflection in proportion.

The flange of a riveted girder comprises all the metal at the top or the bottom of the girder. It is customary in building construction to consider \(\frac{1}{6} \) of the area of the web plate as available for flange section, in which case care should be taken to avoid splicing the web plate at or near the center of the girder; if this is observed, it is proper to consider \(\frac{1}{6} \) of the web as a part of each flange. If a pair of angle irons does not provide sufficient area for the flange, it is customary to use flange plates to make up the required area. Where flange plates are used, the angles should comprise one-half of the flange section, but in heavy flanges where this is impossible, the flange angles should be the heaviest sections rolled. The unsupported width of a flange plate, subjected to compression, should not exceed thirty-two times its thickness, nor should the flange plate extend beyond the outer line of rivets more than five inches, nor more than eight times its thickness.

It is customary in building construction to allow a strain of 15,000 lbs. per square inch on the net section of the bottom or tension flange. Care must be observed to deduct all the area lost by rivet holes, and the rivets should be arranged in the flanges of the girder to make this reduction of area as small as possible. In deducting area lost by rivet holes, the diameter of the holes should be taken $\frac{1}{8}$ inch greater than the rivets, to compensate for injury done the metal by punching. The top or compression flange of the girder is usually made of the same gross area as the bottom or tension flange.

DESIGN OF A RIVETED GIRDER.

Box girder, to carry a wall 20 inches wide. Span, 30 feet between centers of supports = 360 inches. Total weight to be carried, 200 tons = 400,000 lbs. Depth available, 36 inches over all. Load on each support, $\frac{1}{2} \times 400,000 = 200,000$. Web section required, 200,000 ÷ 7,500 = 26.66 sq. ins. Two web plates, $33\frac{1}{2}$ " × $\frac{7}{16}$ " = 29.3 sq. ins. Bending moment at center of span,

 $\frac{1}{8}$ × 400,000 × 360 = 18,000,000 inch lbs. Depth of girder, center of gravity of flanges, 33 inches. Maximum flange strain, 18,000,000 ÷ 33 = 545,450 lbs. Net flange area required, 545,450 ÷ 15,000 = 36.4 sq. ins.

This section is made up as follows: Gross. Net. 4.88 sq. ins. 2 angles, $6'' \times 4'' \times \frac{11}{16}'' \dots 12.96$ " 2 plates, $20'' \times \frac{9}{16}'' \dots 22.50$ " 20.25 "

36.71

In obtaining the above net area of the flange, one rivet hole has been deducted from the area of each angle, and two rivet holes from the area of each cover plate. This deduction is made upon the assumption that the rivets connecting the angles to the web plates are arranged to stagger with the rivets connecting the angles to the flange plates. It is, generally, possible to effect such an arrangement of rivets for a considerable length at the center of the span. If such an arrangement of rivets is not possible, then two rivet holes should be deducted from the area of each angle, and $\frac{1}{6}$ the gross area of the web should be reduced by the area lost for a rivet hole at the extreme edge of the web connecting it to the flange. If a stiffener is used at or near the center of the span, the net area of the web plate available for flange section should be taken at $\frac{1}{9}$ the gross area of the web.

The end reaction of 200,000 lbs. on this girder requires 37 rivets, $\frac{7}{8}$ " diameter, in single shear to transmit it to either flange in a length equal to the depth of the girder. The depth of the girder for this purpose is taken as the depth, center to center of gravity of flanges; there being two lines of rivets, one line connecting each web to the flange, the rivets will require to be spaced $\mathbf{I}_4^{3/1}$ pitch at the end of the girder. This requires an angle having a 6" leg against the web.

The area required for the stiffeners over the supports is 200,000 lbs. \div 15,000 = 13.33 square inches. Four angles, $3\frac{1}{2} \times 3\frac{1}{2}$ ", provide an area of 13 square inches, and are sufficient for the purpose at each end of the girder.

Applying the formula already given for the allowable shearing strain in the web, it will be found that 6,500 lbs. per square inch is the maximum allowable shearing strain, unless the webs are stiffened. Stiffeners of $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$ angles will, therefore, be required for a short distance near each support where the shearing strain exceeds 6,500 lbs. per square inch.

As the bending moment is greatest at the center of the span and diminishes to zero at the supports, it is unnecessary to have the full flange section the whole length of the girder; and, in the present case, one of the two flange plates can be stopped off, short of the supports, without affecting the strength of the girder.

Let A = total flange area of girder.

A" = total area of that portion of the flange which is to be stopped off.

L = length of girder, centers of supports, in feet.

L' = required length, symmetrically arranged about the center of span, of that portion of the flange which is to be stopped off, in feet.

Then L = 2 + L
$$\sqrt{\frac{A''}{A}}$$

In the present instance

$$L' = 2 + 30 \sqrt{\frac{10.12}{36.71}} = 17.7$$

so that the outer flange plates need only be $17\frac{3}{4}$ feet long, placed symmetrically about the center of the span.

This girder is illustrated on page 41.

The following table furnishes a convenient means for finding the net area required in the flange of riveted girders when the load, span, and depth are given.

To obtain the net flange area required, multiply the coefficient given in the table for the given span and depth by the uniformly distributed load in tons of 2,000 lbs. The result will be the net area in square inches required for each flange allowing a maximum fiber strain of 15,000 lbs. per square inch of net area. To illustrate the application of this table, take the box girder already proportioned in detail. By reference to the table, the coefficient for a span of 30 feet and depth of 32 inches is 0.187, and the coefficient for the same span with a depth of 34 inches is 0.177. The coefficient for a depth of 33 inches will be the mean of these two values, or 0.182; and multiplying this by the load, 200 tons, gives 36.4 as the number of square inches of net area required in the flange. This is the same result as that obtained by the extended calculations already illustrated.

RIVETED GIRDERS.

Multiply the coefficient given in the table by the uniformly distributed load, in tons of 2000 lbs. The result will be the net area, in square inches, required for each flange, allowing a maximum fiber strain of 15,000 lbs. per square inch of net area.

Span,		Depth	, Cent	er to (Center	of Gra	vity o	f Flan	ges, in	Inche	es.
Feet.	22	24	26	28	30	32	34	36	38	40	42
10 11 12	.091 .100 .109	.083 .092 .100	.077 .085 .092	.071 .079 .086	.067 .073 .080	.063 .069 .075	.059 .065 .071	. 055 . 061 . 067	.053 $.058$ $.063$.055	.047 .053 .057
13 14 15	.118 .127 .137	.100 .109 .117 .125	.100 .108 .115	.093 .100 .107	.087 .093 .100	.081 .087 .094	.077 $.083$ $.088$.072 .078 .083	.068 .073 .079		.062 .067 .071
16 17 18	.145 .155 .163	.133 .142 .150	.123 .131 .139	.114 .121 .129		.100 .106	.094 .100 .106	.089 $.095$ $.100$.084	.080	.076
$\frac{19}{20}$	$ \begin{array}{r} .173 \\ .182 \\ \hline .191 \end{array} $	$.159$ $.167$ $\overline{.175}$	$0.146 \\ -154 \\ \hline -161$	$.136$ $.143$ $\overline{.150}$	$.127$ $.133$ $\overline{.140}$	$ \begin{array}{r} .119 \\ .125 \\ \hline .131 \end{array} $	$.112$ $.117$ $\overline{.123}$	$.105$ $.111$ $\overline{.117}$	$ \begin{array}{r} .100 \\ .105 \\ \hline .110 \end{array} $	0.095 0.100 0.105	0.091 0.095 0.100
22 23 24	.200 .209 .218	.183 .192 .200	.169 .177 .185	.157 .164 .171	.147	. 137 . 144	. 129 . 135	.122 .128 .133	. 115 . 121 . 126	.110 .115	.105 .109
$ \begin{array}{r} 25 \\ \hline 26 \\ 27 \end{array} $	$ \begin{array}{r} .227 \\ .237 \\ .245 \end{array} $	$\frac{.209}{.217}$ $\frac{.225}{.225}$.192 $.200$ $.208$	$\frac{.179}{.186}$	$\frac{.167}{.173}$	$\frac{.156}{.163}$.147 $.153$ $.159$	-139 -145 -150	$ \begin{array}{r} .131 \\ \hline .137 \\ .142 \end{array} $	$\frac{.125}{.130}$	
28 29 30	.255 .263 .273	.233 .242 .250	.215 .223 .231	$.200 \\ .207 \\ .214$. 187	.175 .181	.165 .171 .177	. 155 . 161 . 167	.147 .153 .157	.145	.138
31 32 33	.282 .291 .300	.259 .267 .275	.239 .246 .254	.221 .229 .236	.207 $.213$ $.220$.194 .200 .206	. 194	.172 .178 .183	.163 .168 .173	.165	.157
$\frac{34}{35}$	$ \begin{array}{r} .309 \\ .318 \\ \hline .327 \end{array} $	$ \begin{array}{r} .283 \\ .292 \\ \hline .300 \end{array} $	$ \begin{array}{r} .261 \\ .269 \\ \hline .277 \end{array} $	$\begin{array}{r} .243 \\ .250 \\ \hline .257 \end{array}$	$ \begin{array}{r} .227 \\ .233 \\ \hline .240 \end{array} $	$ \begin{array}{r} .213 \\ .219 \\ \hline .225 \end{array} $	$ \begin{array}{r} .200 \\ .206 \\ \hline .212 \end{array} $	$ \begin{array}{r} .189 \\ .195 \\ \hline .200 \end{array} $	$ \begin{array}{r} $	$ \begin{array}{r} .170 \\ .175 \\ \hline .180 \end{array} $	
37 38 39	.337 .345 .355	.309 .317 .325	.285 .292 .300	.264 .271 .279	$.253 \\ .260$.244	.217 .223 .229	.205	.199 .205	.190 .195	.181 .185
40	.364	.333	.307	.286	.267	.250	.235	.222	.210	.200	.191

If the section of a girder is given, the safe uniformly distributed load (in tons of 2000 lbs.) can be obtained by dividing the net area of the flange by the coefficient given in the table.

STEEL PLATE GIRDERS.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED.

No stiffeners required except at ends, over supports only.

Girders equivalent to a 24" I beam.

Web.	$24''$. $5'' \times 3\frac{1}{2}$	× 3/8" 2"×½"	$26'' \times 3\frac{1}{2}$		$28'' \times 5'' \times 3\frac{1}{2}$	-	30" × 5" × 3	
Span, Centers of Bear- ings, Feet.	Safe Load, Tons.	Increase for 1,6" Increase in Thick- ness of Angles.	Safe Load, Tons.	Increase for ½" Increase in Thick- ness of Angles.	Safe Load, Tons.	Increase for 16" Increase in Thick- ness of Angles.	Safe Load, Tons.	Increase for 1,8" Increase in Thick- ness of Angles.
20	47.2	5.3	46.5	5.8	45.1	6.2	47.7	6.4 6.1 5.8 5.5 5.3 5.1
21	44.9	5.0	44.3	5.5	42.9	5.9	45.5	
22	42.9	4.8	42.3	5.2	41.0	5.7	43.4	
23	41.0	4.6	40.4	5.0	39.2	5.4	41.5	
24	39.3	4.4	38.8	4.8	37.6	5.2	39.8	
25	37.7	4.2	37.2	4.6	36.1	5.0	38.2	
26	36.3	4.1	35.8	4.4	34.7	4.8	36.7	4.9
27	34.9	3.9	34.4	4.3	33.4	4.6	35.4	4.7
28	33.7	3.8	33.2	4.1	32.2	4.5	34.1	4.5
29	32.5	3.6	32.1	4.0	31.1	4.3	32.9	4.4
30	31.4	3.5	31.0	3.8	30.0	4.2	31.8	4.2
31	30.4	3.4	30.0	3.7	29.1	4.0	30.8	4.1
32	29.4	3.3	29.1	3.6	28.2	3.9	29.8	4.0
33	28.6	3.2	28.2	3.5	27.3	3.8	28.9	3.9
34	27.7	3.1	27.4	3.4	26.5	3.7	28.1	3.7
35	26.9	3.0	26.6	3.3	25.8	3.6	27.3	3.6
36	26.2	2.9	25.8	3.2	25.0	3.5	26.5	3.5
37	25.5	2.8	25.1	3.1	24.4	3.4	25.8	3.4
38	24.8	2.8	24.5	3.0	23.7	3.3	25.1	3.3
39	24.2	2.7	23.8	2.9	23.1	3.2	24.5	3.3
40	23.6	2.6	23.3	2.9	22.5	3.1	23.9	3.2
Wgt.per ft., lbs.	88	7.2	84	7.2	79	7.2	79	6.8

Safe loads given include weight of girder.
Weights of girders given include weight of rivet heads, but not stiffeners.
Maximum fiber strain, 15,000 lbs. per square inch of net area, holes for $\frac{3}{4}$ " rivets being deducted.

STEEL PLATE GIRDERS.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED.

No stiffeners required except at ends, over supports only.

Girders equivalent to two 24" I Beams.

Web. Angles. Plates.	$5'' \times 5$	$\begin{array}{c} 24'' \times \frac{9}{16}'' \\ 5'' \times 5'' \times \frac{1}{2}'' \\ 12'' \times \frac{1}{2}'' \end{array}$		$ \begin{array}{c} 26'' \times \frac{9}{16}'' \\ 5'' \times 5'' \times \frac{7}{16}'' \\ 12'' \times \frac{1}{2}'' \end{array} $		$\begin{array}{c} \times \frac{1}{2}^{\prime\prime} \\ 5^{\prime\prime} \times \frac{3}{8}^{\prime\prime} \\ \times \frac{1}{2}^{\prime\prime} \end{array}$	$ \begin{array}{c} 30'' \times \frac{1}{2}'' \\ 5'' \times 5'' \times \frac{3}{8}'' \\ 12'' \times \frac{3}{8}'' \end{array} $	
Span, Centers of Bear- ings, Feet.	Safe Load, Tons.	Increase for 16" Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 16" Increase in Thickness of Plates.	Safe Load, Tons.	Increase for 16" Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 15" Increase in Thickness of Plates.
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	90.8 86.5 78.9 75.6 72.6 69.8 67.2 64.8 62.6 60.5 58.6 755.0 53.4 49.1 47.8 46.6 45.4	3.6 3.4 3.3 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.2 2.1 2.0 2.0 1.9 1.8 1.8	93.6 89.1 85.1 81.3 78.0 74.8 72.0 69.3 66.8 64.5 62.4 60.4 58.5 56.7 55.0 50.6 49.2 48.0 46.8	3.9 3.7 3.6 3.4 3.3 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.5 2.4 2.3 2.3 2.1 2.0 2.0	93.6 89.1 85.0 81.3 78.0 74.8 72.0 69.3 66.8 64.5 62.4 60.4 58.5 56.7 55.0 50.6 49.2 48.0 46.8	4.3 4.1 3.9 3.7 3.6 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.4 2.3 2.3 2.3 2.1	91.7 87.3 83.4 79.7 76.4 73.3 70.5 67.9 65.5 63.2 61.1 59.2 57.3 55.6 53.9 49.6 48.3 47.0 45.8	4.6 4.3 4.1 3.9 3.8 3.6 3.5 3.4 3.3 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.3
Wgt.per ft., lbs.	158	5.1	153	5.1	143	5.1	136	5.1

Safe loads given include weight of girder.
Weights of girders given include weight of rivet heads, but not stiffeners.
Maximum fiber strain, 15,000 lbs. per square inch of net area, holes for 3" rivets being deducted.

STEEL BOX GIRDERS.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED.

No stiffeners required except at ends, over supports only.

Girders equivalent to two 24" I beams.

Webs. Angles. Plates.	$5'' \times 3$	$\begin{array}{c} 24'' \times \frac{3}{8}'' \\ 5'' \times 3'' \times \frac{1}{2}'' \\ 14'' \times \frac{9}{16}'' \end{array}$		$\begin{array}{c} \times \frac{3}{8}^{\prime\prime} \\ ^{\prime\prime} \times \frac{7}{16}^{\prime\prime} \\ \times \frac{1}{2}^{\prime\prime} \end{array}$	$5'' \times 3$	$\times \frac{3}{8}''$ $'' \times \frac{3}{8}''$ $< \sqrt{16}''$	$5'' \times 3$	$\begin{array}{c} \times \frac{3}{8}^{\prime\prime} \\ ^{\prime\prime} \times \frac{3}{8}^{\prime\prime} \\ \times \frac{3}{8}^{\prime\prime} \end{array}$
Span, Centers of Bear- ings, Feet.	Safe Load, Tons.	Increase for 16" Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 1, " Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 1, " Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 16" Increase in Thickness of Plates.
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	93.8 89.3 85.3 81.6 78.2 75.0 72.2 69.5 67.1 64.7 62.5 60.5 58.6 56.9 55.2 53.6 50.7 49.4 48.1 46.9	4.3 4.1 3.9 3.8 3.6 3.5 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.5 2.4 2.3 2.2 2.2	93.5 89.0 85.0 81.3 77.9 74.8 71.9 69.2 66.8 64.4 62.3 60.3 58.4 56.6 55.0 53.4 50.5 49.2 47.9 46.7	4.7 4.5 4.3 4.1 3.9 3.8 3.6 3.5 3.4 3.2 3.1 3.0 2.9 2.8 2.7 2.7 2.6 2.5 2.4 2.4	92.9 88.5 84.5 80.8 77.4 74.3 71.5 68.8 66.3 64.0 61.9 60.0 58.1 56.3 54.6 53.1 51.6 50.2 48.9 47.6 46.4	5.1 4.8 4.6 4.4 4.2 4.1 3.9 3.8 3.6 3.5 3.4 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.6	95.6 91.1 86.9 83.2 79.7 76.5 73.6 68.3 66.0 63.8 61.7 59.8 58.0 56.3 54.7 50.3 49.0 48.0	5.4 5.2 4.9 4.7 4.5 4.3 4.2 4.0 3.9 3.7 3.6 3.5 3.4 3.2 3.1 3.0 2.9 2.8 2.8
Wgt.per ft., lbs.	174	6.0	166	6.0	159	6.0	158	6.0

Safe loads given include weight of girder. Weights of girders given include weight of rivet heads, but not stiffeners. Maximum fiber strain, 15,000 lbs. per square inch of net area, holes for 3" rivets being deducted.

STEEL BOX GIRDERS.

SAFE LOADS, IN TONS OF 2000 LBS., UNIFORMLY DISTRIBUTED.

No stiffeners required except at ends, over supports only.

Girders equivalent to a 24" Beam Box Girder.

Webs. Angles. Plates.	$5'' \times 3$	$\begin{array}{c} \times \frac{3}{8}^{\prime\prime} \\ \frac{1}{2}^{\prime\prime} \times \frac{1}{2}^{\prime\prime} \\ \times \frac{3}{4}^{\prime\prime} \end{array}$	$5'' \times 3$	$\begin{array}{c} \times \frac{3}{8}^{\prime\prime} \\ \frac{1}{2}^{\prime\prime} \times \frac{1}{2}^{\prime\prime} \\ \times \frac{5}{8}^{\prime\prime} \end{array}$	$5'' \times 3\frac{1}{2}$	$\times \frac{3}{8}''$ $5'' \times \frac{7}{16}''$ $\times \frac{9}{16}''$	$5'' \times 3\frac{1}{2}$	$\begin{array}{c} \times \frac{3}{8}'' \\ \frac{3}{2}'' \times \frac{7}{16}'' \\ \times \frac{1}{2}'' \end{array}$
Span, Centers of Bear- ings, Feet.	Safe Load, Tons.	Increase for 16" Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 1,6" Increase in Thick- ness of Plates.	Safe Load, Tons.	Increase for 16" Increase in Thickness of Plates.	Safe Load, Tons.	Increase for 13" Increase in Thick- ness of Plates.
20	130.7	5.9	129.5	6.3	128.4	6.8	131.7	7.3
21	124.5	5.6	123.3	6.0	122.3	6.5	125.4	7.0
22	118.8	5.4	117.7	5.8	116.8	6.2	119.7	6.7
23	113.6	5.1	112.6	5.5	111.7	6.0	114.5	6.4
24	108.9	4.9	107.9	5.3	107.0	5.7	109.7	6.1
25	104.5	4.7	103.6	5.1	102.8	5.5	105.3	5.9
26	100.5	4.5	99.6	4.9	98.8	5.3	101.3	5.6
27	96.8	4.4	95.9	4.7	95.1	5.1	97.5	5.4
28	93.3	4.2	92.5	4.5	91.7	4.9	94.1	5.2
29	90.1	4.1	89.3	4.4	88.6	4.7	90.8	5.1
30	87.1	3.9	86.3	4.2	85.6	4.6	87.8	4.9
31	84.3	3.8	83.5	4.1	82.9	4.4	85.0	4.7
32	81.7	3.7	80.9	4.0 ·	80.3	4.3	82.4	4.6
33	79.2	3.6	78.5	3.8	77.8	4.1	79.8	4.4
34	76.9	3.5	76.2	3.7	75.6	4.0	77.5	4.3
35	74.7	3.4	74.0	3.6	73.4	3.9	75.2	4.2
36	72.6	3.3	71.9	3.5	71.4	3.8	73.2	4.1
37	70.6	3.2	70.0	3.4	69.4	3.7	71.2	4.0
38	68.8	3.1	68.1	3.3	67.6	3.6	69.3	3.9
39	67.0	3.0	66.4	3.3	65.9	3.5	67.5	3.8
40	65.3	2.9	64.7	3.2	64.2	3.4	65.8	3.7
Wgt.per ft., lbs.	216	7.7	206	7.7	196	7.7	193	7.7

Safe loads given include weight of girder.
Weights of girders given include weight of rivet heads, but not stiffeners.
Maximum fiber strain, 15,000 lbs. per square inch of net area, holes for 3" rivets being deducted.

SUDDENLY APPLIED LOADS.

If a load is suddenly, that is, instantaneously, applied to a beam, it produces twice the strain that the same load would produce if at rest upon the beam. The safe suddenly applied load is, therefore, only one-half the safe static load.

If the load is not only suddenly applied, but falls upon the beam from a height, it produces more than twice the strain that the same load statically applied would produce.

Let P = the weight that falls upon the beam.

h = height of fall, in inches.

P'= equivalent static load producing the same strain as that produced by the falling weight.

d = deflection of beam, in inches, produced by the weight,P, if statically applied.

B = the weight of the beam together with its superimposed dead load, such as arches and flooring, whose combined mass tends to absorb the impact.

Then, if
$$m = \frac{r}{r + \frac{r7 \text{ B}'}{35 \text{ P}}}$$

$$P' = P\left(1 + \sqrt{\frac{2 m h}{d} + 1}\right)$$

From which the equivalent static load, P', is obtained, and the strain can then be computed in the ordinary manner.

The uniformly distributed static load, equivalent to the falling weight, can be obtained in the following manner:—

Let W'= equivalent uniformly distributed load.

W = safe uniformly distributed load on beam, from the tables.

D := deflection, in inches, under safe uniformly distributed load.

Then, W'= 2 P
$$\left(I + \sqrt{\frac{5 \text{ Whm}}{4 \text{ P D}} + I} \right)$$

In applying these formulæ P' and W' will be in tons or pounds according as the weights are taken in tons or pounds.

LINTELS.

Lintels of steel shapes or of cast iron are employed to span openings in walls over doors and windows. It is generally necessary that the lintels should have a flat soffit. Where the load to be carried is small, steel channels, laid flat, furnish a very satisfactory lintel on moderate spans. The table on page 146 gives the safe uniformly distributed loads, in tons of 2,000 lbs., for Passaic steel channels used as lintels, by which the channel required for any given span and load may be easily selected.

Sometimes the load to be carried by a lintel consists of a uniformly distributed load from the wall above and also the concentration from a floor joist which rests upon the wall at or near the center of the span. In such instances, the concentrated load must be multiplied by 2, the result being considered as an equivalent uniform load, which, added to the regular distributed load, may be taken as the equivalent total uniformly distributed load. Thus, if a lintel spanning an opening of 3 ft. is to carry a uniformly distributed load of 2 tons and a concentrated load of 2 tons at the center of the span, the concentrated load multiplied by 2 and added to the distributed load gives 6 tons as the equivalent distributed load. By referring to the table, it will be found that a 15" × 45 lb. steel channel, which has a safe load of 5.97 tons, is required.

Where the loads are considerable and the use of beam girders is not advisable, cast iron lintels are used. The table on page 147 gives the coefficients of strength, in tons of 2,000 lbs., for cast iron lintels, by which the safe uniformly distributed loads, in tons, for any given span may be found by dividing the coefficient given by the span in ft. Thus, if it is required to find the safe uniformly distributed load on a cast iron lintel, 12" wide, 10" deep and 1" metal, on a span of 6 ft., by referring to the table, the coefficient of strength given for this lintel is 72.2 tons, which

divided by the span gives the safe load as 12.03 tons.

If a part of the load is concentrated, it must first be multiplied by 2, and the result considered as the equivalent uniform load. The proper lintel required for any given span and load may be found by multiplying the equivalent uniform load, in tons, by the span, in feet, the result being the coefficient required; then, by reference to the table, the lintel, having the required coefficient of strength, can be easily selected. Thus, if it is required to select a lintel carrying a 20" wall on a span of 8 ft. to support a uniformly distributed load of 5 tons, and a concentrated load of 5 tons at the center, the method is as follows. The concentrated load must first be reduced to an equivalent uniform load by multiplying it by 2, and added to the regular uniform load, giving 15 tons as the equivalent uniform load on the span which, multiplied by the span in feet, gives the coefficient required as 120 tons. Then, referring to the table it will be found that a lintel, 20" wide, 10" deep and 1" metal, which has a coefficient of 125.4 tons, will be required.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

IN TONS OF 2000 LBS.,

X. WEB HORIZONTAL. X. A. X. Safe loads given, include weight of channel.

Depth of Channel, ins.	r ft.,lbs.	Coefficient of strength, in tons.				Spa	n in fe	et.				Deflection Coefficient.
Dep	Wgt. per ft., lbs.	Coefficient strength, i	2	3	4	5	6	7	8	9	10	Defic
15 15 15	40	$20.2 \\ 17.9 \\ 16.3$		5.97	4.48	3.58	$3.37 \\ 2.98 \\ 2.71$	2.56	2.24	2.24 1.99 1.81	1.79	.0028 .0030 .0032
$\begin{array}{ c c }\hline 12\\ 12\\ 12\\ \end{array}$	$\frac{35}{35}$ 27	$15.0 \\ 12.9$		$\overline{5.00}$		3.00	$\overline{2.50}$	2.14		1.67	$\frac{1.05}{1.50}$ $\frac{1.29}{1.29}$	
$\frac{12}{10}$	$\frac{20}{30}$	$\frac{8.97}{11.7}$	5.85	$\overline{3.90}$	$\frac{2.24}{2.93}$	$\overline{2.34}$	$\frac{1.50}{1.95}$	1.67	$\frac{1.12}{1.46}$	$\frac{1.00}{1.30}$	$\frac{.90}{1.17}$.0038
$\frac{10}{10}$	$\frac{20}{15}$ $\frac{15}{21}$	$9.33 \\ 6.66 \\ \hline 8.21$	4.67 3.33 4.11	2.22	1.67		$\frac{1.56}{1.11}$ $\frac{1.37}{1.37}$	$1.33 \\ .95 \\ \hline 1.17$	$1.17 \\ .83 \\ \hline 1.03$	1.04 .74 .91	93 67 82	.0039
9 9	16 13	7.25 4.90	$\frac{3.63}{2.45}$	$2.42 \\ 1.63$	1.81 1.23	$1.45 \\ .98$	1.21 .82	$1.04 \\ .70$.91 .61	.81 .54	.73 .49	.0044
8 8 8	17 13 10	5.50 4.80 3.41		$1.83 \\ 1.60 \\ 1.14$		$1.10 \\ .96 \\ .68$.93 .80	.79 .69 .49	.69 .60 .43	.61 .53	.55 .48 .34	.0046 .0051 .0053
7777	$\frac{17}{13}$	5.92 5.03	$\frac{2.96}{2.52}$	$\begin{array}{c} \hline 1.98 \\ 1.68 \\ \end{array}$	1.48 1.26	$\frac{1.18}{1.01}$.99	.85 .72	.74 .63 .37	.66 .56	.59 .50 .29	.0047 .0052 .0056
$\frac{7}{6}$	$\frac{9}{20}$ 17	$ \begin{array}{r} 2.94 \\ \hline 8.91 \\ 7.84 \end{array} $	$\frac{1.47}{4.46} \\ 3.92$		$\frac{.74}{2.23} \\ 1.96$	$\frac{.59}{1.78}$ $\frac{1.78}{1.57}$	$\frac{.49}{1.49}$ $\frac{1.49}{1.31}$	1.27 1.12	$\overline{1.11}$ $.98$.99	.89 .78	0.0030 0.0047 0.0051
6	$\frac{12}{8}$	$4.80 \\ 2.67$	$\frac{2.40}{1.34}$.89	.67	.96	.80	.69	.60	.53	.48	.0054
5 5 5	$\begin{vmatrix} \overline{12} \\ 9 \\ 6 \end{vmatrix}$	$\begin{bmatrix} 3.89 \\ 3.20 \\ 1.71 \end{bmatrix}$	1.95 1.60	$1.30 \\ 1.07 \\ .57$.97 .80	.78 .64	.65 .53	.56 .46 .24	.49 .40 .21	.43 .36 .19	.39 .32 .17	.0055 .0062 .0068
4 4 4	$\left \begin{array}{c} \overline{10} \\ 8 \end{array} \right $	$ \begin{array}{r} 3.36 \\ 2.88 \\ 1.39 \end{array} $		$\frac{1.12}{.96}$.84 .72	.67 .58	.56 .48 .23	.48 .41 .20	.42 .36 .17	-37 -32 -15	.34 .29 .14	.0059 .0065 .0073

Safe loads, uniformly distributed, in tons of 2,000 lbs., for intermediate spans can be obtained by dividing the Coefficient of Strength by the span, in feet. Deflection, in inches, under tabular load, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

COEFFICIENTS OF STRENGTH FOR CAST IRON LINTELS,

IN TONS OF 2000 LBS.

Width of flange,	Depth of lintel,		Thickness of metal, in inches.									
Ins.	Ins.	3.	7/8	1	118	$1\frac{1}{4}$	Webs.					
28	6	59.5	64.9	69.8	74.6	77.8	2					
11	8	95.5	106.2	115.0	123.0	130.5	2					
"	10	140.5	150.5	164.8	176.2	192.0	2 2 2 2					
"	12	171.4	196.5	216.1	236.3	256.7	2					
11	16	235.8	272.5	307.4	342.0	375.0	2					
24	6	52.8	57.4	62.6	66.6	70.0	2					
"	8	83.4	93.4	102.4	109.6	117.0	2					
//	10	116.0	130.4	144.4	156.2	167.6	2 2 2 2					
11	12	150.4	168.6	189.6	207.0	223.0	2					
//	16	225.0	257.0	286.0	316.5	345.0	2					
20	6	47.2	51.4	55.1	58.5	62.0	2					
//	8	72.6	84.7	89.5	96.0	102.5	2					
//	10	100.5	113.2	125.4	136.0	146.8	2 2 2					
//	12	122.6	141.8	158.0	174.7	189.5	2					
//	16	196.4	224.7	251.4	277.2	301.5	2					
16	6	33.0	35.1	37.7	40.3	41.8	1					
//	8	52.1	57.7	62.8	67.2	71.6	1					
"	10	72.2	81.2	89.6	96.8	104.0	1					
"	12	92.4	106.1	117.5	128.8	138.8	1					
11	16	139.4	159.0	177.8	196.0	214.0	1					
12	6	26.4	28.7	31.3	33.3	35.0	1					
11	8	41.7	46.7	51.2	54.8	58.5	1					
11	10	58.0	65.2	72.2	78.1	83.8	1					
	12	75.2	84.3	94.8	103.5	111.5	1					
8	6	19.7	21.7	23.4	24.9	26.4	1					
"	8	30.6	34.4	37.7	40.7	43.3	1					
//	10	42.6	48.1	53.0	57.8	62.9	1					
//	12	55.4	62.4	70.0	76.7	83.5	1					

Coefficients are calculated for a maximum tensile strain of 3,000 lbs. per square inch. The safe uniformly distributed load, in tons, for any given span may be found by dividing the coefficient, as above, by the span in feet.

COLUMNS.

Columns of steel shapes riveted together are largely used in the construction of buildings. Several types of built columns are shown on page 42. The columns generally used in building construction are the Plate and Angle columns, Figs. 2 and 3; the Plate and Channel columns, Figs. 8 and 9; and the Z-Bar columns, Figs. 11 and 12. Where these do not furnish sufficient section for carrying the loads, the column shown in Fig. 5 can be advantageously used and made large enough for very heavy loads by increasing the thickness of the material. The manner of connecting the segments of the columns together, and the mode of attaching beams and girders is illustrated on page 43. Abutting segments of columns should be thoroughly connected in a manner to preserve the continuity of strength, thus adding to the stiffness of the steel frame work.

The strength of a column depends upon its shape and length. Long columns have less strength than shorter columns of the same size for the reason that they are liable to fail by lateral flexure, and of two columns having the same area and length, the one in which the material is placed at a greater distance from the center will develop greater strength. If all the material in the cross section were concentrated at a distance from the neutral axis equal to the radius of gyration, the resistance to flexure would be the same as for the material distributed over the cross section. Formulæ for the strength of columns therefore take into consideration the length of the column and the radius of gyration of the section. The manner of securing the ends of the columns also has an appreciable effect upon their strength. Columns fixed so firmly at the ends that they are liable to fail in the body of the column before rupturing their end connections develop greater strength than columns connected by means of pins through the ends. Columns with square ends develop less ultimate strength than if the ends are firmly fixed, but greater than if the ends are pin connected. Medium steel columns develop practically a uniform strength for all lengths up to 50 radii of

gyration, and soft steel columns develop practically a uniform strength for all lengths up to 30 radii of gyration, the ultimate for both grades of steel being about 48,000 lbs. per sq. in., up to the lengths indicated.

The following straight-line formulæ represent very closely the ultimate strength, in lbs. per sq. in., of columns whose lengths are between 50 and 150 radii of gyration,

Fixed Ends,	Medium Steel. $60,000 - 210 \frac{l}{r}$	Soft Steel. $54,000 - 185 \frac{l}{r}$
Square Ends,	$60,000 - 230 \frac{l}{r}$	$54,000 - 200 \frac{7}{r}$
Pin Ends,	$60,000 - 260 \frac{l}{r}$	$54,000 - 225 \frac{l}{r}$

where l = length of column, and l = least radius of gyration, both in inches. Columns used in building construction may be considered as having square ends, as pin connections are seldom used; and as it is usual to allow a factor of safety of 4 for such columns, the following formulæ may, therefore, be taken as giving the allowable strain, in lbs. per sq. in., on square ended columns for building construction.

Medium Steel
$$\begin{cases} 12,000 \text{ for lengths up to 50 radii of gyration.} \\ 15,000 - 57\frac{l}{r} \text{ for lengths over 50 radii.} \end{cases}$$
Soft Steel
$$\begin{cases} 12,000 \text{ for lengths up to 30 radii of gyration.} \\ 13,500 - 50\frac{l}{r} \text{ for lengths over 30 radii.} \end{cases}$$

No column should be used having a length greater than 150 radii of gyration, or whose length exceeds 45 times the least dimension of the column.

The following tables of safe loads on steel columns have been calculated from the foregoing formulæ. The tables for the safe loads on Angle and I Beam columns have been calculated for soft steel. The tables of safe loads for Plate and Angle columns, Channel and Plate columns and Z Bar columns have been calculated for medium steel, that being the grade of steel advisable to use for such columns.

The weights given for the various columns do not include rivets or connections of any kind. Rivets should be spaced not exceeding 3" centers at the ends of a column for a distance equal to twice the width of the column. The distance between centers of rivets, in the line of strain, should not exceed 16 times the least thickness of metal of the parts joined; and the distance between rivets, at right angles to the line of strain, should not exceed 32 times the least thickness of metal.

The table on page 153 gives the ultimate strength of wrought iron columns calculated from Gordon's formulæ. This table may be of use in determining the safety of existing structures of wrought iron. Steel columns are now exclusively used instead of wrought iron, because of their superiority of strength without increased cost.

Cast iron columns are sometimes used in buildings of moderate height, but their use is not to be recommended for buildings where the iron framework must be rigid and afford sufficient lateral stability. The manner in which cast iron columns are connected together, and the mode of attaching beams and girders to them does not permit obtaining sufficient rigidity for such buildings. Cast iron columns have more or less internal strains due to the unequal cooling of the metal in the moulds, which makes it necessary to employ a large factor of safety. No cast iron column should be used in a building with a factor of safety less than 8. Particular attention should be paid to the designing of the cast iron brackets for supporting the beams and girders, in order that they may not be subjected to large internal strains making them liable to break off under a sudden shock. The tables on pages 204-206, inclusive, furnish an easy method of determining the safe loads on round and square cast iron columns. Where the loads are eccentrically applied, producing bending strains in the columns, cast iron columns are inadmissible because of their inability to resist such strains.

The safe loads given in the tables are calculated for concentric loading, i. e., the center of gravity of the load being coincident with the center of gravity of the column. Where this is not the case, the load being greater on one side of the column than on the other, or the entire load being applied on one side only of the column, the effect of the eccentricity must be in-

vestigated. If the unbalanced load, in lbs., is multiplied by the distance of its point of application from the center of the column, in inches, the result is the bending moment in inch lbs., which, being divided by the section modulus of the column, gives the strain per sq. in. on the extreme fiber produced by the bending. The load on the column produces a uniform compressive strain on the entire cross section to which must be added the bending strain, the sum being the maximum strain on the extreme fiber. Where the loads are very eccentrically applied, the bending effect is very considerable and must never be neglected. If the maximum fiber strain, due to direct compression and bending, exceeds the allowable strains per sq. in. on the column by more than 25%, the section of the column should be increased. Thus if the allowable strain on a column from direct load is 10.000 lbs. per sq. in., the combined bending and compression should not exceed 12,500 lbs. per sq. in.

Tables are given of the properties of all columns, for which safe loads are calculated, by means of which the effects of eccentric loading are easily calculated.

EXAMPLE.

A 12" channel column, 16 ft. long, consisting of two 12" \times 20 lb. channels and two 14" $\times \frac{3}{8}$ " plates sustains a total load of 100 tons of which 40 tons are unbalanced by opposing loads. Find the fiber strain, the point of application of the eccentric load being $6\frac{3}{8}$ " from the center of the column, producing bending around the axis XX.

Referring to the table of Properties of Channel Columns, on page 162, the area of the column is found to be 22.3 sq. ins., and its Section Modulus around the axis XX is found to be 102. The calculation then is as follows:

Bending moment = $80,000 \times 6_8^{3\prime\prime} = 510,000$ in. lbs. Strain due to bending, lbs. per sq. in. $510,000 \div \text{Section modulus } (=102) = 5,000$ Strain due to direct compression,

 $200,000 \div \text{Area} (= 22.3) = 8,960$

Maximum Fiber Strain, = 13,960

Columns can be proportioned for bending and compression in the following manner, where P_c is a central load and P_e an eccentric load applied at the distance z from the neutral axis:

W=total load=Pc + Pe

 $k = eccentricity = z \div b$.

A = area of column, square inches.
r = radius of gyration in direction of bending.

S = allowable strain persq.in. for direct compression.
 S' = allowable strain per sq. in. combined compression and bending.

W'=equivalent central load.

$$C = \left(\frac{\hat{b}}{r}\right)^2$$

Then,
$$A = \frac{(W + C k P_e)}{S'} = \frac{4}{5} \frac{(W + C k P_e)}{S}$$
 when $S' = 1\frac{1}{4} S$.

 $W' = \frac{S}{S'}(W + C k P_e) = \frac{4}{5}(W + C k P_e) \text{ when } S' = 1\frac{1}{4}S.$

The equivalent load W' may then be used in selecting the proper column from the tables of safe loads. If W' is less than W the effect of bending is to be neglected as the column must not be proportioned for a load less than W. If the bending moment, M, is given substitute $\frac{M}{b}$ in the formulae for k P_e . The bending moment must be in inch lbs. or inch tons according as W and S are taken in lbs. or tons.

The coefficient C varies but slightly for the same type of column. Values are given in the table from which it can be assumed and an approximate column selected. The exact value may then be found and the correction made, if necessary,

in the equivalent load.

In the example on the previous page, k=1 and assuming C=1.40

 $W' = \frac{4}{5}(100 + 1.40 \times 1 \times 40) = 124.8 \text{ tons.}$

If the length of the column is taken as 30 ft., referring to the table on page 191, a column made of $2-12^{\prime\prime} \times 20$ lb. channels and $2-14^{\prime\prime} \times \frac{7}{16}^{\prime\prime}$ plates will be required which has a safe load of 125 tons for a length of 30 ft.

APPROXIMATE VALUES OF C FOR VARIOUS COLUMNS.

-	X X	× ×	*][*	x]	×IĮ.	¥,	¥.	Vinequal Angles.
Axis XX.	1.60 to 1.75	1.55	to	1.40 to 1.60	1.90	to	2.30 to 2.00	C_1 1.00 to 1.25 C_2 4.50
Axis YY.	to	5.00 to 4.00		to	3.25 to 3.00	3.50	3.25 to 3.00	

ULTIMATE STRENGTHS OF WROUGHT IRON COLUMNS.

For Fixed Ends. $\frac{40,000}{1 + \frac{l^2}{40,000r^2}}$

For Square Ends. $\frac{40,000}{1+\frac{l^2}{30,000r^2}}$

For Pin Ends. $\frac{40,000}{1+\frac{l^2}{20,000r^2}}$

l = length in inches.

r = least radius of gyration in inches.

Ratio of	Ultimate St	trength, lbs.	per sq. in.	Ratio of Length to Diameter.				
Length to Radius of Gyration.	Fixed Ends.	Square Ends.	Pin Ends.	Z Bar	Box Column.	Open Column.	Star Column.	
30	39,100	38,800	38,300	9	10	12	7	
35	38,800	38,400	37,700	10	12	13	8	
40	38,500	38,000	37,000	12	13	15	9	
45	38,100	37,500	36,300	13	15	17	10	
50	37,700	36,900	35,600	15	17	19	11	
55	37,200	36,300	34,800	16	18	21	12	
60	36,700	35,700	33,900	18	20	23	13	
65	36,200	35,100	33,000	19	22	25	14	
70	35,600	34,400	32,100	21	23	27	15	
75	35,100	33,700	31,200	22	25	29	17	
80	34,500	33,000	30,300	24	27	31	18	
85	34,000	32,200	29,400	25	28	33	19	
90	33,300	31,500	28,500 ·	26	30	35	20	
95	32,600	30,800	27,600	28	32	36	21	
100	32,000	30,000	26,700	29	33	38	22	
105	31,400	29,300	25,800	31	35	40	23	
110	30,700	28,500	24,900	32	37	42	24	
115	30,100	27,800	24,100	34	38	44	25	
120	29,300	27,000	23,300	35	40	46	27	
125	28,800	26,300	22,500	37	42	48	28	
130	28,100	25,600	21,700	38	43	50	29	
135	27,500	24,900	20,900	40	45	52	30	
140	26,800	24,200	20,200	41	47	54	31	
145	26,200	23,500	19,500	43	48	56	32	
150	25,600	22,900	18,800	44	50	58	33	

For safe quiescent loads, as in buildings, divide above values by 4.

ULTIMATE STRENGTHS OF SOFT AND MEDIUM STEEL COLUMNS,

Calculated from the following Formulæ.

	SOFT STEEL. MEDIUM STEEL.										
Fixed En	ds = 54 ,	000 — 18	$5\frac{l}{r}$ Fixe	ed Ends =	60,000 -	$-210\frac{l}{r}$					
Square E	nds = 54 ,	000 – 20	$0\frac{l}{r}$ Squ	are Ends =	60,000 -	$-230\frac{l}{v}$					
Pin Ends	Pin Ends = 54,000 - 225 $\frac{l}{r}$ Pin Ends = 60,000 - 260 $\frac{l}{r}$										
l= length in inches. $r=$ least radius of gyration in inches.											
Ratio of		Ultim	ate Strengt	h, lbs. per s	q. in.						
Length to Radius of Gyration, Soft Steel. Medium Steel.											
1	Fixed Square Pin Fixed Square Pin Ends. Ends. Ends. Ends.										
·				Enus.	Enus.						
$\frac{30}{35}$	48,500 47,500	48,000 47,000	47,300 46,100								
40	46,600	46,000	45,000								
45	45,700	45,000	43,900	40.500	40.500	4° 000					
50	44,800	44,000	42,800	49,500 48,500	48,500	47,000					
55 60	43,800 42,900	43,000 42,000	41,600 40,500	45,500	47,400 46,200	45,700 44,400					
65	42,000	41,000	39,400	46,400	45,100	43,100					
70	41,100	40,000	38,300	45,300	43,900	41,800					
75	40,100	39,000	37,100	44,300	42,800	40,500					
80	39,200	38,000	36,000	43,200	41,600	39,200					
85	38,300	37,000	34,900	42,200	40,500	37,900					
90	37,400	36,000	33,800	41,100	39,300	36,600					
95	36,400	35,000	32,600	40,100	38,200	35,300					
100	35,500	34,000	31,500	39,000	37,000	34,000					
105	34,600	33,000	30,400	38,000	35,900	32,700					
110	33,700	32,000	29,300	36,900	34,700	31,400					
115	32,700	31,000 30,000	28,100 27,000	35,900 34,800	33,600 32,400	30,100 28,800					
120 125	31,800 30,900	29,000	25,900	33,800	31,300	27,500					
130	30,000	28,000	24,800	32,700	30,100	26,200					
135	29,000	27,000	23,600	31,700	29,000	24,900					
140	28,100	26,000	22,500	30,600	27,800	23,600					
145	27,200	25,000	21,400	29,600	26,700	22,300					
150	26,300	24,000	20,300	28,500	25,500	21,000					

For safe quiescent loads, as in buildings, divide above values by 4.

RADII OF GYRATION FOR TWO ANGLES

PLACED BACK TO BACK.

EQUAL LEGS.

Radii of Gyration given correspond to directions of the arrow-heads.

Size,	Thickness,		Radii of	Gyration.	
inches.	inches.	\mathbf{r}_{\circ}	$\mathbf{r}_{_{1}}$	$\mathbf{r}_{_{2}}$	r ₃
$6 \times 6 \\ 6 \times 6$	7 8 3 8	1.87 1.88	2.64 2.49	2.83 2.66	2.92 2.75
5×5 5×5	3. 4 3.	1.55 1.56	2.20 2.09	2.38 2.27	2.48 2.36
4×4 4×4	13 15 16	1.24 1.24	1.83 1.67	2.03 1.85	2.12 1.94
$3\frac{1}{2} \times 3\frac{1}{2} \\ 3\frac{1}{2} \times 3\frac{1}{2}$	5 8 16	1.04 1.08	1.51 1.46	1.70 1.65	1.81 1.74
3×3 3×3	5 8 1 4	.94 .93	1.40 1.25	1.59 1.43	1.69 1.53
$2\frac{1}{2} \times 2\frac{1}{2} \\ 2\frac{1}{2} \times 2\frac{1}{2}$	1/2 1/4	.76 .77	1.12 1.05	1.31 1.25	1.42 1.34
$\begin{array}{c} 2\frac{1}{4} \times 2\frac{1}{4} \\ 2\frac{1}{4} \times 2\frac{1}{4} \end{array}$	$\frac{\frac{1}{2}}{16}$.70 .69	1.05 .94	1.25 1.12	1.35 1.22
2×2 2×2	$\frac{\frac{1}{2}}{16}$.62 .62	.95 .84	1.15 1.03	1.26 1.13

RADII OF GYRATION FOR TWO ANGLES

PLACED BACK TO BACK, LONG LEG VERTICAL.

UNEQUAL LEGS.

Radii of Gyration given correspond to directions of the arrow-heads.

Size,	Thickness.		Radii of	Gyration.	
inches.	inches.	\mathbf{r}_{o}	r,	$\mathbf{r}_{_{2}}$	r ₃
6×4 6×4	7 8 3 8	1.95 1.93	1.68 1.50	1.87 1.67	1.97 1.76
$5 \times 3\frac{1}{2}$ $5 \times 3\frac{1}{2}$ 5×3 5×3 5×3	3 4 3 8 3 1 5 6	1.59 1.60 1.62 1.61	1.44 1.34 1.23 1.09	1.63 1.51 1.42 1.26	1.73 1.61 1.52 1.36
$\begin{array}{c} 4\frac{1}{2} \times 3 \\ 4\frac{1}{2} \times 3 \end{array}$	3 4 15	1.43 1.45	1.25 1.13	1.44 1.31	1.55 1.40
$ \begin{array}{c} 4 \times 3\frac{1}{2} \\ 4 \times 3\frac{1}{2} \\ 4 \times 3 \\ 4 \times 3 \\ 4 \times 3 \end{array} $	3 4 15 5 8 5 16	1.24 1.26 1.23 1.27	1.53 1.41 1.20 1.17	1.72 1.58 1.39 1.35	1.83 1.69 1.50 1.45
$\begin{array}{c} 3\frac{1}{2} \times 3 \\ 3\frac{1}{2} \times 3 \\ 3\frac{1}{2} \times 2\frac{1}{2} \\ 3\frac{1}{2} \times 2\frac{1}{2} \end{array}$	58 35 16 16	1.06 1.10 1.10 1.12	1.27 1.21 1.04 .96	1.46 1.39 1.23 1.17	1.56 1.49 1.34 1.24
$\begin{array}{c} 3 \times 2^{\frac{1}{2}} \\ 3 \times 2^{\frac{1}{2}} \\ 3 \times 2 \\ 3 \times 2 \\ 3 \times 2 \end{array}$	16 16 1 1 2	.93 .95 .92 .96	1.07 1.00 .80 .75	1.27 1.18 1.00 .93	1.37 1.28 1.10 1.04
$\begin{array}{c} 2\frac{1}{2} \times 2 \\ 2\frac{1}{2} \times 2 \\ 2\frac{1}{4} \times 1\frac{1}{2} \\ 2\frac{1}{4} \times 1\frac{1}{2} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.80 .79 .70 .72	.86 .79 .60 .57	1.06 .97 .79 .75	1.16 1.07 .91 .86

RADII OF GYRATION FOR TWO ANGLES

PLACED BACK TO BACK, SHORT LEG VERTICAL.

UNEQUAL LEGS.

Radii of Gyration given correspond to direction of the arrow-heads.

Size,	Thickness,		Radii of (Gyration.	
inches.	inches.	\mathbf{r}_{\circ}	$\mathbf{r}_{_{\scriptscriptstyle 1}}$	$\mathbf{r}_{_2}$	$\mathbf{r}_{_3}$
6×4 6×4	7 8 3 8	1.19 1.17	2.94 2.74	3.13 2.92	3.23 3.02
$5 \times 3\frac{1}{2}$ $5 \times 3\frac{1}{2}$ 5×3 5×3	34 38 34 5 16	1.01 1.02 .86 .85	2.39 2.27 2.50 2.33	2.58 2.45 2.69 2.51	2.68 2.55 2.79 2.61
$ \begin{array}{c} 4\frac{1}{2} \times 3 \\ 4\frac{1}{2} \times 3 \end{array} $	3 4 15	.86 .87	2.18 2.06	2.38 2.25	2.46 2.33
$ \begin{array}{c} 4 \times 3\frac{1}{2} \\ 4 \times 3\frac{1}{2} \\ 4 \times 3 \\ 4 \times 3 \\ 4 \times 3 \end{array} $	3 4 5 5 8 16	1.05 1.07 .83 .89	1.85 1.73 1.84 1.79	2.04 1.91 2.03 1.97	2.14 2.00 2.13 2.07
$ \begin{array}{c} 3\frac{1}{2} \times 3 \\ 3\frac{1}{2} \times 3 \\ 3\frac{1}{2} \times 2\frac{1}{2} \\ 3\frac{1}{2} \times 2\frac{1}{2} \end{array} $	5.5 9 16 16 14	.87 .90 .72 .74	1.57 1.53 1.66 1.58	1.76 1.71 1.85 1.76	1.87 1.81 1.95 1.86
$ \begin{array}{c} 3 \times 2\frac{1}{2} \\ 3 \times 2\frac{1}{2} \\ 3 \times 2 \\ 3 \times 2 \\ 3 \times 2 \end{array} $	16 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	.73 .75 .55 .57	1.40 1.32 1.42 1.39	1.59 1.49 1.62 1.57	1.69 1.60 1.72 1.68
$ \begin{array}{c} 2\frac{1}{2} \times 2 \\ 2\frac{1}{2} \times 2 \end{array} $	$\begin{array}{c c} \frac{1}{2} \\ & \frac{3}{16} \end{array}$.58 .60	1.18 1.10	1.37 1.28	1.48 1.38

PROPERTIES OF PASSAIC STEEL PLATE AND ANGLE COLUMNS.

	1 -	1 .2	1 2 . 1		1					
ate,	les,	of Thes	ion hes.	er ids.		Axis XX	•	A	xis YY	•
Width of Plate, Inches.	Size of Angles, Inches.	Thickness of Plate and Angles, Inches.	Area of Section, Square Inches.	Weight per Foot, Pounds	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.
6 " " " "	$3 \times 2^{\frac{1}{2}}$	$\frac{1}{4}$ $\frac{1}{16}$ $\frac{7}{16}$ $\frac{1}{2}$	6.74 8.52 11.71 13.00	22.9 29.0 39.8 44.2	36.3 44.6 59.0 64.6	12.09 14.87 19.68 21.53	2.32 2.29 2.25 2.23	10.4 13.6 21.1 24.7	7.60	1.24 1.26 1.34 1.38
7 " " "	$3\frac{1}{2} \times 2\frac{1}{2}$	16 7 16 16 1	7.51 9.43 12.98 14.50	25.5 32.1 44.1 49.3	58.3 71.9 95.8 105.1	16.65 20.55 27.38 30.02	2.78 2.76 2.72 2.69	16.1 20.8 30.8 36.3	4.43 5.59 8.15 9.69	1.54 1.58
8 " " " " " " " " " " " " " " " " " " "	4 X 3	$ \begin{array}{c c} 5 \\ \hline 16 \\ 38 \\ 7 \\ 16 \\ \underline{1} \\ 2 \\ \underline{9} \\ 16 \\ \underline{5} \\ 8 \end{array} $	10.86 13.12 14.98 17.24 19.50 20.92	36.9 44.6 50.9 58.6 66.3 71.1	107.5 128.5 144.6 163.5 182.9 193.5	26.88 32.13 36.15 40.88 45.73 48.38	3.14 3.13 3.11 3.08 3.06 3.04	30.3 37.4 44.4 53.1 61.9 69.1	16.04	1.67 1.69 1.72 1.75 1.78 1.82
9 " " " "	$4\frac{1}{2} \times 3$	$ \begin{array}{c c} \hline $	11.81 14.22 16.30 18.74 21.18 22.83	40.1 48.3 55.5 63.7 72.0 77.6	154.2 183.5 207.5 235.9 263.0 279.1	34.26 40.78 46.12 52.44 58.44 62.24	3.62 3.59 3.57 3.55 3.52 3.50	42.6 52.9 63.1 75.3 87.9 99.0	9.15 11.13 13.37 15.64 17.90 20.57	2.08
10 "" "" ""	57 53	$ \begin{array}{c c} \hline $	12.73 15.35 17.62 20.24 22.35 24.97	43.3 52.2 59.9 68.8 76.0 84.9	211.8 252.7 286.4 326.0 355.7 392.3	42.36 50.54 57.28 65.20 71.14 78.46	4.08 4.06 4.03 4.01 4.00 3.97	57.6 71.9 85.9 102.2 118.1 136.6	16.46 19.22 22.36 25.43	2.13 2.17 2.21 2.25 2.29 2.34
12 " " " " " "	6 × 4	3 8 7 16 1 2 9 16 5 8 11 3 4	18.94 22.17 25.44 28.67 30.94 34.17 37.44	64.4 75.4 86.5 97.5 104.9 116.2 127.3		73.37 85.60 97.42 108.5 115.6 126.8 137.6	4.85 4.81 4.80 4.77 4.75 4.72 4.70	119.6 144.5 171.8 199.7 223.4 255.7 288.7	39.88	2.51 2.55 2.60 2.64 2.69 2.73 2.78

PROPERTIES OF PASSAIC STEEL PLATE AND ANGLE COLUMNS.

	ار ئى	on, es.	r Is.		Axis XX	ζ.	A	xis YY.	
Section of Column.	Thickness of Cover Plates, Inches.	Area of Section, Square Inches.	Weight per Foot, Pounds.	Moment of Incrtia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Incrtia.	Section Modulus.	Radius of Gyration, Inches.
4 Angles $6'' \times 4'' \times \frac{1}{2}''$ 1 Web Plate $12'' \times \frac{3}{4}''$ 2 Cover Plates $13''$ wide.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59.32 60.94 62.57 64.19 65.82 67.44	152.0 157.5 163.0 168.5 174.0 179.6 185.1 190.6 201.7 207.2 212.8 218.3 223.8	1199 1269 1340 1415 1492 1563 1642 1723 1803 1884 1965 2050 2143 2224 2311 32406	219.3 227.2 237.0 246.0 256.1 264.9 274.3 283.2 292.7 301.8 311.2	5.64 5.68 5.72 5.75 5.80 5.85 5.88 5.93 5.98	732.2	91.52 95.04 98.56 102.1 105.6 109.1 2112.6	3.00 3.04 3.07 3.10 3.12 3.14 3.16 3.20 3.22 3.22 3.23 3.25 3.26 3.27 3.29 3.30
4 Angles $6'' \times 4'' \times \frac{3}{4}''$ 1 Web Plate $14'' \times \frac{3}{4}''$ 2 Cover Plates 15'' wide.	$egin{array}{c c} 1_{rac{1}{6}} \ 1_{rac{1}{4}} \ \end{array}$	55.82 57.69 59.57 61.44 63.32 65.19 68.94	196.1 7 202.6 1 208.8 2 215.3 0 221.6 7 228.1 1 234.4 2 240 9 247. 7 253. 4 259. 2 266. 9 272. 7 279.	2088 2195 2304 2417 253 264 1276 4288 8300 1313 6325 9338 351 6363 1377	8 276. 2 5 288. 3 4 299. 8 7 312. 8 5 336. 5 5 349. 4 4 373. 9 1 386. 1 3 409. 5	6.12 6.17 6.22 6.28 6.28 6.32 6.36 6.41 6.41 6.48 6.57 6.66 6.67 6.66 6.70 6.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8	885.9 921.0 956.9 991.1 1026.1 1061.1	80.65 85.30 89.90 94.60 99.30 1104.0 5108.7 7113.4 118.1 122.8 2127.5 3132.2	$ \begin{array}{c} 13.30 \\ 03.33 \\ 83.37 \\ 63.40 \\ 63.44 \\ 3.46 \\ 3.52 \\ \hline 3.54 \\ 3.56 \\ 3.60 \\ 3.62 \\ 3.64 \\ 3.66 \end{array} $

n.	ach bs.	of te,	ion, hes.	A	xis XX	C	A	xis YY	
Designation.	Weight of each channel, Lbs. per Ft.	Thickness of Cover Plate, Inches.	Area of Section, Square Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, Inches.
	8	$\frac{1}{4}$	8.70	64.0	19.9	2.72	46.7	11.7	2.31
s 8" wide	10	5 16 3 8	$ \begin{array}{r} \hline 9.88 \\ 10.88 \\ 11.88 \end{array} $	68.1 78.2 90.1	$21.0 \\ 23.6 \\ 26.6$	2.62 2.68 2.75	$50.3 \\ 56.0 \\ 61.0$	12.6 14.0 15.3	2.27 2.27 2.27
lumn: ver plate	12	$\frac{\frac{3}{8}}{\frac{7}{16}}$	12.96 13.96 14.96	98.9 110. 122.	$ \begin{array}{r} \hline 29.2 \\ 32.0 \\ 34.9 \\ \end{array} $	2.75 2.81 2.86	71.8 77.2 82.5	18.0 19.3 20.6	2.35 2.35 2.35
6" Channel Column: 2 Channels 6" deep and 2 cover plates 8" wide.	15	$\begin{array}{c c} \hline & \frac{1}{2} \\ \hline & \frac{9}{16} \\ \hline & \frac{5}{8} \end{array}$	$ \begin{array}{r} \hline 16.72 \\ 17.72 \\ 18.72 \end{array} $	127. 138. 152.	$ \begin{array}{r} \hline 36.4 \\ 39.3 \\ 42.1 \end{array} $	2.76 2.81 2.86	86.9 92.2 97.6	21.7 23.1 24.4	2.28 2.28 2.28
6" Cl	17	$\begin{array}{c} \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4} \end{array}$	$ \begin{array}{ c c c } \hline 19.70 \\ 20.70 \\ 21.70 \end{array} $	161. 174. 188.	$44.4 \\ 47.2 \\ 50.2$	2.86 2.90 2.94	111. 116. 122.	$ \begin{array}{r} \hline 27.8 \\ 29.1 \\ 30.4 \end{array} $	2.38 2.37 2.37 2.37 2.36 2.36
2 Channe	// //	13 16 7 8 15 16	$\begin{vmatrix} 22.70 \\ 23.70 \\ 24.70 \\ 25.70 \end{vmatrix}$	203. 217. 233. 248.	53.1 56.0 59.0 62.1	2.98 3.02 3.06 3.10	127. 132. 138. 143.	31.8 33.1 34.4 35.8	2.37 2.36 2.36 2.36
	9	5 16	$9.72 \\ 10.85$	97.1 113.	$25.9 \\ 29.7$	$\frac{3.16}{3.23}$	71.4 79.0	15.8 17.6	$2.71 \\ 2.70$
7" Channel Column: 2 Channels 7" deep and 2 cover plates 9" wide.	13	$\begin{array}{c c} & 5 \\ \hline & 3 \\ \hline & 8 \\ \hline & 7 \\ & 1 & 6 \end{array}$	13.23 14.35 15.48 16.60	129. 146. 163. 181.	$\begin{vmatrix} 34.1 \\ 37.8 \\ 41.6 \\ 45.4 \end{vmatrix}$	3.13 3.20 3.26 3.33	100. 108. 115. 123.	$ \begin{array}{r} 22.3 \\ 24.0 \\ 25.7 \\ 27.4 \end{array} $	2.75 2.74 2.73 2.72
7" Channel Column unnels 7" deep and 2 plates 9" wide.	17	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{9}{16} \\ 5 \end{bmatrix}$	$\frac{18.95}{20.08}$	191. 209. 228.	$\frac{43.4}{47.8}$ 51.5 55.3	$ \begin{array}{r} 3.33 \\ 3.17 \\ 3.23 \\ 3.28 \\ 3.33 \end{array} $	133. 141. 149.	$ \begin{array}{r} \hline 29.6 \\ \hline 31.4 \\ \hline 33.1 \end{array} $	$ \begin{array}{r} \hline 2.66 \\ 2.66 \\ 2.65 \end{array} $
7" Cha Channels 7	// // //	1	21.20 22.33 23.45 24.58	228. 247. 267. 288.	59.1 63.0 66.8	3.33 3.38 3.43	156. 163. 171.	$\begin{vmatrix} 34.7 \\ 36.4 \\ 38.1 \end{vmatrix}$	2.65 2.64 2.64
) 64 O 64	// // //	$begin{pmatrix} 16 & 7 & 7 & 8 \\ \frac{15}{16} & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix}$	$ \begin{array}{r} 25.70 \\ 26.83 \\ 27.95 \end{array} $	309. 331. 354.	70.7 74.7 78.6	$\begin{vmatrix} 3.47 \\ 3.51 \\ 3.56 \end{vmatrix}$	179. 187. 194.	$\begin{vmatrix} 39.8 \\ 41.5 \\ 43.1 \end{vmatrix}$	2.64 2.64 2.64

	ion.	each 1,	s of ates,	tion, hes.	1	Axis X			Axis Y	Υ.
	Designation.	Weight of each Channel, Ibs. per foot.	Thickness of Cover Plates, inches.	Area of Section, square inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, inches.
	ates	10	$\begin{array}{c c} \frac{1}{4} \\ \hline \frac{5}{16} \end{array}$	$11.0 \\ 12.3$	141 164	$\begin{vmatrix} 33.3 \\ 38.1 \end{vmatrix}$	$\frac{3.58}{3.66}$	107 118	$21.5 \\ 23.6$	3.12 3.09
Johnn .	d 2 cover place.	13 " "	$\begin{array}{c} \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \\ \frac{1}{2} \end{array}$	13.9 15.1 16.4 17.6	179 203 227 252	$\begin{vmatrix} 41.6 \\ 46.3 \\ 51.2 \\ 56.1 \end{vmatrix}$	3.59 3.66 3.73 3.79	136 147 157 167	27.3 29.3 31.4 33.5	3.14 3.12 3.10 3.08
8" Channel Column	2 channels 8" deep and 2 cover plates 10" wide.	17 " " " " " " " "	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{16} \\ \frac{1}{8} \\ \frac{1}{16} \\ \frac{3}{4} \\ \frac{1}{16} \\ \frac{7}{8} \\ \frac{15}{16} \\ 1 \\ \end{array}$	20.0 21.2 22.5 23.7 25.0 26.2 27.5 28.7 30.0	265 290 317 344 372 400 430 459 490	58.7 63.8 68.2 73.3 78.2 83.1 88.3 93.1 98.2	3.64 3.70 3.76 3.81 3.86 3.91 3.96 4.00 4.04	184 194 205 215 225 236 246 257 267	36.8 39.0 40.9 43.0 45.2 47.2 49.3 51.4 53.4	3.04 3.03 3.02 3.02 3.02 3.00 2.99 2.99 2.99
	ride.	13 ″	$\frac{\frac{5}{16}}{\frac{3}{8}}$	14.5 15.9	240 272	$\frac{49.8}{55.7}$	4.07 4.14	167 181	$\frac{30.4}{32.9}$	3.40 3.38
	n : ates 11" w	16	$\frac{\frac{3}{8}}{\frac{7}{16}}$	17.7 19.0 20.4	295 329 364	60.5 66.7 72.8	4.09 4.16 4.23	208 222 236	$37.8 \\ 40.3 \\ 42.9$	3.43 3.41 3.41
	9" Channel Column: 2 channels 9" deep and 2 cover plates 11" wide.	21	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{16} \\ \frac{5}{8} \\ \frac{1}{16} \\ \frac{3}{4} \\ \frac{13}{16} \\ \frac{1}{16} \\ \frac{1}{1} \\ \frac{1}$	23.4 24.8 26.1 27.5 28.9 30.3 31.6 33.0 34.4 35.8 37.1 38.5 39.9	383 417 453 489 528 566 604 648 686 726 771 816 859	76.6 82.5 88.3 94.0 100 106 113 119 125 131 137 144 149	4.05 4.11 4.16 4.21 4.27 4.33 4.38 4.43 4.47 4.50 4.55 4.60 4.64	259 273 287 300 314 328 342 356 370 383 397 411 425	47.0 49.5 52.1 54.6 57.0 59.6 62.2 64.8 67.3 69.6 72.2 74.8 77.3	3.33 3.32 3.31 3.30 3.30 3.29 3.29 3.28 3.28 3.27 3.27 3.27 3.27

÷	ال الله	ess ess ess ess	1, t		Axis XX	ζ.	Δ.	xis YY	
Designa- tion.	W't of each Channel.	Thickness of Cover Plates, Ins.	Area of Section, sq. inches.	Mom.	Section	Rad. of	Moment	Section	Rad. of
Des	W' es	Chic of C late	Are Sec	of	Modu-	Gyr.,	of	Modu-	Gyr., inches.
			10.0	Inertia.	lus.	inches.	Inertia.	lus.	
	15	3 16	$\begin{array}{c} 16.3 \\ 18.2 \end{array}$	336	63.2	4.49	227	37.9	3.69
9		3 8		377	70.2	4.55	245	40.9	3.67
wide.	20	7 8	20.8	412	77.0	4.46	286	47.7	3.71
5/1	"	$\frac{7}{16}$	22.3	457	84.0	4.53	304	50.7	3.69
nel Column: 2 cover plates 12"		$\frac{\frac{1}{2}}{1}$	23.8	502	91.5	4.60	322	53.7	3.68
mn	25	$\frac{1}{2}$	26.7	526	95.8	4.45	348	58.0	3.61
lul I p	"	$\frac{29}{16}$	28.2	572	103	4.51	366	61.1	3.61
Column over plate		5 8	29.7	619	110	4.56	384	64.0	3.60
e e	30	11 8	32.6	643	114	4.44	408	68.0	3.54
	"	$\frac{11}{16}$	34.1	691	122	4.50	426	71.0	3.53
Channel deep, 2 c	"	$\frac{3}{4}$	35.6	740	129	4.56	444	74.0	3.53
O %	"	$\frac{13}{16}$	$\frac{37.1}{38.6}$	790 841	$\begin{array}{c} 136 \\ 144 \end{array}$	$\frac{4.62}{4.68}$	462 480	$\begin{array}{c} \textbf{77.0} \\ \textbf{80.0} \end{array}$	$3.53 \\ 3.53$
10" Chanr channels 10" deep,	"	$\frac{15}{16}$	40.1	893	$\begin{array}{c} 144 \\ 150 \end{array}$	4.73	$\begin{array}{c} 480 \\ 498 \end{array}$	83.0	3.52
1 nels	"	16	41.6	949	158	4.78	516	86.0	3.52
anı	",	$1\frac{1}{8}$	$\frac{41.0}{44.6}$	1059	172	4.87	552	92.0	3.52
Ch.	"	$1\frac{1}{4}$	47.6	1173	188	4.97	588	98.0	3.51
62	//	$1\frac{3}{8}$	50.6	1292	203	5.05	624	104	3.51
	"	$1\frac{1}{2}$	53.6	1416	217	5.14	660	110	3.51
	20	3 8	22.3	650	102	5.40	429	61.3	4.39
le.	<i>N</i>	7 16	24.1	724	112	5.48	457	65.3	4.36
wide.	25	76	27.1	760	118	5.30	505	72.1	4.31
	"	10 1/2	28.8	833	128	5.38	534	76.3	4.31
nel Column : 2 cover plates 14"	30	1/2	31.6	891	137	5.32	600	85.7	4.36
Column ver plates	"	16	33.4	964	147	5.37	628	89.7	4.34
ole r p	"	<u>5</u>	35.1	1043	157	5.45	657	93.9	4.33
Cove	"	$\frac{11}{16}$	36.9	1118	168	5.51	686	98.0	4.31
Channel deep, 2 co		3/4	38.6	1198	178	5.57	714	102	4.30
emi P,	35	$\frac{3}{4}$	41.6	1234	183	5.44	7 53	108	4.25
12" Chan channels 12" deep,	"	$\frac{13}{16}$	43.4	1316	193	5.50	782	112	4.25
2,2	"	15 7	45.1	1396	204	5.56	810	116	4.24
12" s 12"	"	$\frac{15}{16}$	46.9	1482	214	5.63	840	120	4.24
nel	<i>"</i>	1	$\frac{48.6}{52.1}$	1565	224	5.68	867	$\begin{array}{c} 124 \\ 132 \end{array}$	4.22
nan	"	$egin{array}{c c} 1^{rac{1}{8}} \ 1^{rac{1}{4}} \end{array}$	55.6	$\begin{vmatrix} 1742 \\ 1922 \end{vmatrix}$	245 266	5.79 5.90	925 981	140	4.21 4.21
2 ct	"	$1\frac{14}{8}$	59.1	$\begin{array}{c c} 1922 \\ 2105 \end{array}$	287	5.98	1039	148	4.19
	",	$1\frac{1}{2}$	62.6	2302	308	$\frac{6.08}{6.08}$	1096	157	4.19
8	1	-2	3.010	, 2002	000	3.00	2000	10.	8

HEAVY SECTION.

Axis YX. Axis YY.					e de				1		
167.0 49.1 831 145 4.11 522 87 3.26 128 152 1.72.1 50.6 881 152 4.18 540 90 3.27 177.2 52.1 932 159 4.23 558 93 3.27 177.2 52.1 932 159 4.23 558 93 3.27 150 50 50 1 187.4 55.1 1039 173 4.35 594 99 3.28 159 4.23 558 166 4.30 576 96 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.8 114 188 4.45 630 105 3.29 187.8 114 188 4.45 630 105 3.29 187.8 114 188 18		lon.	s of tes,	of Lbs.	ction		Axis X	.X.		Axis Y	Υ.
167.0 49.1 831 145 4.11 522 87 3.26 128 152 1.72.1 50.6 881 152 4.18 540 90 3.27 177.2 52.1 932 159 4.23 558 93 3.27 177.2 52.1 932 159 4.23 558 93 3.27 150 50 50 1 187.4 55.1 1039 173 4.35 594 99 3.28 159 4.23 558 166 4.30 576 96 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.8 114 188 4.45 630 105 3.29 187.8 114 188 4.45 630 105 3.29 187.8 114 188 18	ı	nati	nes Pla hes	r, sh	Sec	t of	n us.	of on,	t of	n 1S.	of of
167.0 49.1 831 145 4.11 522 87 3.26 128 152 1.72.1 50.6 881 152 4.18 540 90 3.27 177.2 52.1 932 159 4.23 558 93 3.27 177.2 52.1 932 159 4.23 558 93 3.27 150 50 50 1 187.4 55.1 1039 173 4.35 594 99 3.28 159 4.23 558 166 4.30 576 96 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.8 114 188 4.45 630 105 3.29 187.8 114 188 4.45 630 105 3.29 187.8 114 188 18		sig	ick er Inc	/eig um per	a of	rti	Stric	ius atic	rtis	tio	ius atio
167.0 49.1 831 145 4.11 522 87 3.26 128 152 1.72.1 50.6 881 152 4.18 540 90 3.27 177.2 52.1 932 159 4.23 558 93 3.27 177.2 52.1 932 159 4.23 558 93 3.27 150 50 50 1 187.4 55.1 1039 173 4.35 594 99 3.28 159 4.23 558 166 4.30 576 96 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.4 55.1 1039 173 4.35 594 99 3.28 187.8 114 188 4.45 630 105 3.29 187.8 114 188 4.45 630 105 3.29 187.8 114 188 18	ı	De	1100	Col	lre.	lnc	Sec	Zad In	forr	Sec	kad ryr: Inc
1	ł					-	F	1=	=		
1	ı	S S	34	167.0	49.1	831	145	4.11	522	87	3.26
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	un elat	13	172.1	50.6	881	152	4.18	540	90	3.27
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	m z ×	7	177.2	52.1		159	4.23	558		3.27
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	Į	S 8 8	16	182.3	53.6		166	4.30		96	3.28
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ł	2 c	11	187.4	55.1		173	4.35	594		3.28
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	ann S., plk	1g	197.0	61 1	1149	188		630	105	3.29
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont		Ch J b	13	218 0	64.1	1204				111	3.30
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	2,4	1 ×	228 2	67 1			4.00	702	102	2 21
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	lea)"/> nd	15	238.4	70.1			4.73		123	3 39
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	a F s 1($\tilde{1}\frac{3}{4}$		73.1		263			135	3.33
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	ı	xtr nel	17/8	258.8	76.1					141	3.33
S 2\frac{1}{4} 289.4 85.1 2361 326 5.27 954 159 3.34 S \frac{3}{4} 197.6 58.1 1402 208 4.91 927 132 3.99 under the control of the cont	١	'E	2	269.0	79.1		293	5.10	882	147	
3	ı	303	$2\frac{1}{8}$	279.2	82.1		311	5.19		153	3.34
1	ı	C1	$2\frac{1}{4}$	289.4	85.1	2361	326	5.27	954	159	3.34
1	I		3	107 6	50 1	1.400	000	4 01	005	100	0.00
16 209.4 61.6 1563 228 5.05 985 141 4.00 16 209.4 61.6 63.4 1646 237 5.10 1013 145 4.00 17 221.3 65.1 1729 247 5.15 1041 149 4.00 18 233.3 68.6 1907 268 5.28 1099 157 4.00 19 23 15 257.0 75.6 2272 309 5.49 1213 173 4.01 18 235.0 79.1 2466 329 5.59 1271 181 4.01 18 280.8 82.6 2665 349 5.69 1328 189 4.02 18 292.7 86.1 2876 371 5.78 1385 198 4.02 19 24 24 328.4 96.6 3538 435 6.05 1557 222 4.02 24 340.4 100.1 3773 458 6.15 1614 231 4.02 25 24 340.4 100.1 3773 458 6.15 1614 231 4.02 25 25 25 25 25 25 25	I	tes.	13	202 5				4.91	927	132	3.99
15 215.4 63.4 1646 237 5.10 1013 145 4.00	ı	mu pla \$	7 16	209.4	61 6			5.05		141	3.99
1	i	olu 1"/	8 15	215.4	63.4		237	5.10	1013	141	4.00
1 233.3 68.6 1907 268 5.28 1099 157 4.00	ı	Cov S 1	1 1	221.3	65.1		247	5.15			4.00
14	ı	one 2 late	$1\frac{1}{8}$	233.3	68.6		268	5.28		157	
13	ı	hai bs.,	14	245.1	72.1	2090	288	5.38	1156	165	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	web.C	$\frac{1\frac{3}{8}}{8}$		75.6	2272			1213	173	4.01
日本語	ı	2×3	$\frac{1}{2}$	269.0	79.1		329				4.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	He light	18		82.6		349	5.69	1328	189	4.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	tra els	17		86.1			5.78			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	Exi	9	316 5		3319	391 415	5.80			4.02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ı	2", Zha	21	328.4				6.05			
1010 1010 1011 201 1.02	I	2 C C L L L L L L L L L L L L L L L L L	$\frac{78}{2\frac{1}{4}}$	340.4	100.1			6.15		231	4.02
	O.	3	*				100	3.13	1011	701	

LIGHT SECTION.

HEAVY SECTION.

Control Cont										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n.	ach	of es,	les.	A	xis X	X.	A	xis Y	Y.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Designatic	Weight of e Channel lbs. per fo	Thickness Cover Plat inches.	Area of Section, square inch	Moment of Inertia.	Section Modulus.	Radius of Gyration, inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, inches.
: Edd 35 \(\frac{9}{16} \) 39.7 1789 222 6.71 1166 137 5.42 Soloto 40 \(\frac{5}{8} \) 44.9 1983 244 6.65 1288 152 5.36 Box of the control of t	S		$\frac{9}{16}$	$ \begin{array}{r} 36.4 \\ 38.5 \end{array} $	1767		6.69 6.77		128 134	5.46 5.43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ction: er plate		9 16 5 8	41.9	1789 1928	222 237	6.79	1166 1217	143	5.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ght Se		$\frac{11}{16}$	47.0	2124	259	6.72	1339	158	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mn, Li and tv wide.	//	$\frac{3}{4}$	51.9	2324	282	6.69	1456	171	5.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	deep	//	13	57.0	2527	304	6.66	1576	185	5.27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	hanne rels 15'	//	$1^{\frac{15}{16}}$	63.4	2822 29 7 5	335	6.79	1678 1730	197 203	5 22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15" (chan	//	11	67.7 71.9	3608	412	7.08	1934	228	5.21 5.19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		//	$1\frac{1}{2}$	80.4	4278	475	7.30	2139	252	5.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ction: es 17"	//	13	78.0	2870	345	6.06	1971	232	5.03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	avy Se er plat 14" X	"	$1^{\frac{15}{16}}$	82.3 84.4	3165 3318	375 390	$\frac{6.20}{6.27}$	2074 2125	244 250	5.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	in, He	"	14	92.9	3951	452	6.52	23 30	274	5.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Colun deep web	"	$1\frac{1}{2}$	101.4	4621	513	6.75	2534	298	5.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	hannel nels 15 e, and	"	$1\frac{3}{4}$ $1\frac{7}{8}$	$109.9 \\ 114.2$	5328 5696	576 608	6.96 7.06	2739 2841	322 334	4.99 4.99
0	z chan	"	$2\frac{1}{8}$	122.7	6463	672	7.26	3046	358	4.99 4.98 4.98
	33		1-4	,2000	3001			32.23	3.0	

n.	بيد	of g	ion, tes.	A	xis XX	ζ.	A	Axis Y	₹.
Designation.	Section of Column.	Thickness of Z bars and web plate.	Area of Section, square inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, inches.	Moment of Inertia.	Section Modulus.	Radius of Gyration, inches.
12" Z bar Column.	4 Z bars 6" deep and I web plate 8" wide.	$\begin{array}{c} \frac{3}{8} \\ \frac{7}{16} \\ \frac{1}{2} \\ \frac{9}{16} \\ \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4} \\ \frac{1}{16} \\ \frac{7}{8} \end{array}$	21.4 25.1 28.8 31.2 34.8 38.5 40.5 44.1 47.7	287 347 409 427 489 556 562 629 700	46.5 55.2 64.1 67.9 76.8 85.9 88.2 97.3 106.6	3.67 3.72 3.77 3.69 3.74 3.79 3.72 3.77 3.82	337 391 445 469 518 567 579 624 664	46.5 54.0 61.3 66.4 73.4 80.0 84.2 90.7 96.5	3.97 3.95 3.92 3.88 3.86 3.83 3.78 3.76 3.73
10" Z bar Column.	4 Z bars 5" deep and 1 web plate 7" wide.	$\begin{array}{c} 5 \\ 3 \\ 3 \\ 8 \\ 7 \\ 16 \\ \hline 2 \\ 9 \\ 16 \\ 5 \\ \hline 11 \\ 16 \\ \hline 3 \\ 4 \\ 13 \\ 16 \\ \end{array}$	15.8 19.0 22.3 24.5 27.7 30.9 32.7 35.8 39.0	149 186 225 236 275 318 320 363 411	29.0 35.5 42.0 44.9 51.5 58.4 59.9 66.8 74.3	3.08 3.13 3.17 3.10 3.16 3.21 3.13 3.18 3.25	197 235 272 290 324 358 365 393 428	30.1 35.8 42.1 45.5 50.8 56.1 59.0 63.5 69.2	3.54 3.52 3.50 3.44 3.42 3.40 3.34 3.32 3.30
8" Z bar Column.	4 Z bars 4" deep and and 1 web plate 6½" wide.	$\begin{array}{c} \frac{1}{4} \\ \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{16} \\ \frac{1}{2} \\ \frac{9}{16} \\ \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4} \end{array}$	11.3 14.2 17.1 19.0 21.9 24.7 26.3 29.0 31.9	68.7 89.8 113 118 142 167 167 193 221	16.6 21.3 26.1 28.1 32.9 37.8 38.8 43.8 49.0	2.47 2.52 2.57 2.49 2.54 2.59 2.52 2.58 2.63	123 152 184 198 225 252 258 281 305	20.0 24.6 29.8 33.1 37.6 41.9 44.3 48.4 52.4	3.31 3.28 3.28 3.23 3.21 3.19 3.13 3.11 3.09
6"Z bar Column.	4 Z bars 3" deep and 1 web plate 6" wide.	$ \begin{array}{c c} & \frac{1}{4} \\ & \frac{5}{16} \\ & \frac{3}{8} \\ & \frac{7}{16} \\ & \frac{1}{2} \\ & \frac{9}{16} \end{array} $	9.38 11.8 13.7 16.1 17.8 20.1	32.3 42.8 48.0 59.5 63.6 76.0	10.3 13.3 15.1 18.1 19.6 22.7	1.86 1.91 1.87 1.92 1.89 1.94	86.7 108 121 140 150 168	15.6 19.3 22.3 25.8 28.3 31.7	3.04 3.02 2.97 2.95 2.91 2.89

PROPERTIES OF PASSAIC STEEL Z BAR COLUMNS.

g g g g g g g g g g g g g g g g g g g												
na-	u ii	Thickness of Cover Plates.	of on, nes.	I	Axis XX	ζ.	A	xis YY .				
Designa- tion.	Section of Column.	Fhicknes of Cover Plates.	Area of Section, sq. inches	Mom.	Section	Rad. of	Moment	Section	Rad. of			
De	လို လိ	of PP	Se.	of Inertia.	Modu- lus.	Gyr., inches.	of Inertia.	Modu- lus.	Gyr., inches.			
	oi	3 8	$\overline{51.0}$	1014	150.0	4.46	750.5	107.2	3.84			
E I	% ************************************	7 16	52.8	1094	160.7	4.55	779.2	111.3	3.84			
la la	XX	3	54.5	1180	171.6	4.65	808.0	115.4	3.85			
Z bar column.	4 Z bars 6" × 3" 1 web plate 8" × 3" cover plates 14" wide.	16	56.3	126 0	181.6	4.72	836.2	119.5	3.85			
är	s (ate	5/8	58.0	1344	192.2	4.82	864.7	123.5	3.86			
p	Z bars web plat	116	59.8	1431	202.7	4.89	893.7	127.7	3.87			
N	veb ver	$\frac{3}{4}$	61.5	1511	212.0	4.96	922.0	131.7	3.88			
14"	44 400	13 16	63.3	1609	223.9	5.04	951.2	135.9	3.88			
	67	7/8	65.0	1701	234.5	5.11	979.5	139.9	3.88			
		$\frac{11}{16}$	66.9	1618	223.2	4.92	979.3	139.7	3.83			
nn.	K 7/1/ K 8/1/ Wide.	$\frac{3}{4}$	68.7	1711	234.0	4.99	1007	143.8	3.84			
Z bar column.	X X *	13 16	70.5	1805	244.8	5.06	1035	147.9	3.84			
ု၀၁	× × × × × × × × × × × × × × × × × × ×	7 8	72.2	1901	255.7	5.13	1064	152.0	3.84			
17	6 ette	15 16	74.0	1999	266.5	5.20	1092	$156.2 \\ 160.2$	$\frac{3.84}{3.85}$			
pç	ars ple pla	1 1	75.7 77.5	2098 2198	277.5 288.3	$\begin{bmatrix} 5.26 \\ 5.32 \end{bmatrix}$	1121 1150	164.2	3.85			
	4 Z bars $6_8'' \times 1$ web plate $8'' \times 1$ cover plates $14'' \times 1$	$\begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{8} \end{array}$		2300	299.1	5.39	1178	168.2	3.85			
14"	Z × 000	1-3	81.0	2405	310.4	5.45	1207	172.5	3.86			
-	4 T	$\begin{array}{c c} 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \\ \end{array}$	82.7	2510	321.3	5.51	1236	176.5	3.86			
		1	81.4	2298	303.8	5.31	1726	216.2	4.60			
		11	83.4	2413	316.5	5.38	1769	221.6	4.60			
		110	85.4	2531	329.5	5.44	1811	226.8	4.60			
		1_{16}^{3}	87.4	2650	341.9	5.50	1854	232.2	4.60			
		$\begin{array}{c} 1_{16} \\ 1_{8} \\ 1_{16} \\ 1_{16} \\ 1_{14} \\ 1_{4} \\ \end{array}$	89.4	2771	354.4	5.56	1897	237.6	4.60			
		1_{16}^{5}	91.4	2895	367.6	5.62	1939	242.9	4.60			
i.	= =	$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \\ \end{array}$	93.4	3019	380.4	5.69	1982	248.2	4.60			
	× × × × × × × × × × × × × × × × × × ×	$1\frac{7}{16}$	95.4	3146	393.3	5.74	2025	253.6	4.60			
olu	X X 7	12	97.4	3275	406.3	5.80	2067	258.9	$\begin{vmatrix} 4.60 \\ 4.60 \end{vmatrix}$			
Z bar column.	Z bars $6\frac{1}{8}$ '' × web plate 10" × over plates 16" w	$egin{array}{c} 1^{rac{9}{16}} \\ 1^{rac{5}{8}} \\ 1^{rac{11}{16}} \\ \end{array}$	$99.4 \\ 101.4$	3406 3539	$\begin{vmatrix} 419.2 \\ 432.3 \end{vmatrix}$	5.86 5.91	2110 2153	$\begin{vmatrix} 264.1 \\ 269.4 \end{vmatrix}$	4.60			
23	rs late	111	$101.4 \\ 103.4$	3674	45.5	5.96	2195	274.8	4.61			
2	bars b plat er plat		105.4 105.4		458.5	6.01	2238	280.1	4.61			
	1 Z b 1 web cover	113	103.4	3951	471.8	6.06	2280	285.4	4.61			
16"	4 4 2 2	17.6	109.4		485.0	6.12	2323	290.8	4.61			
	•	$egin{array}{c} 1^{\frac{1}{4}} \\ 1^{\frac{1}{16}} \\ 1^{\frac{7}{8}} \\ 1^{\frac{15}{16}} \\ 2 \\ \end{array}$	111.4	4235	498.3	6.17	2366	296.2	4.61			
			113.4		511.7	6.21	2409	301.4	4.61			
		216	115.4		524.9	6.26	2451	306.8	4.61			
		$egin{array}{c} 2rac{1}{8} \ 2rac{3}{16} \ \end{array}$	117.4	4679	538.6	6.31	2494	312.2	4.61			
		$2\frac{3}{16}$	119.4	4831	552.1	6.36	2537	317.4	4.61			
00		$2\frac{1}{4}^{10}$	121.4	4985	565.3	6.41	2579	322.9	4.61			
-												

SAFE LOADS FOR PASSAIC STEEL ANGLES, UNEQUAL LEGS, SQUARE ENDS. USED AS STRUTS OR COLUMNS, IN TONS OF 2000 LBS.

One Angle, Neutral Axis Diagonal.

																								_
		12	25.6	10.2																:1	radii		0 radii.	
		11	28.2	11.4	16.4	7.3														Strains per square inch;	12,000 lbs. for lengths of 30 radii	i.	13,500 – 50 for lengths over 30 radii.	
		10	30.8	12.6	18.5	8 5	15.1	6.1	13.5	5.4	14.6	0.9								per squ	or lengt	and under	r length	
	ι feet.	6	33.3	13.8	20.7	9.7	17.4	7.1	15.7	6.4	16.7	6.9	10.5	5.4						trains)0 lbs. f	ਲ _ _	-50 ⁻ fo	1
	Unsupported length of Column, in feet.	00	35.9	15.0	25.9	11.0	19.7	8.1	17.9	7.4	18.8	7.8	12.4	6.4	10.8						12,00		13,500	
	o of Co	1	38.4	16.1	25.1	12.2	25.0	9.1	20.0	8 9	20.8	8.7	14.2	7.4	12.6	9.9	9.6	4.2	8.3	3.6				
•	l length	9	41.0	17.3	27.3	13.4	24.4	10.1	22.2	6.3	22.9	9.6	16.0	တ က	14.3	5.5	11.4	5.0	9.9	4.4	9.9	3.4	5.0	2.1
agona	pportec	20	43.5	18.5	29.4	14.6	26.7	11.1	24.4	10.3	25.0	10.6	17.8	9.3	16.0	8.4	13.0	5.8	11.4	5.1	8.0	4.2	7.3	5.6
one imigic, ivenual trais Diagonal	Unst	4	46.1	19.7	31.6	15.8	29.0	12.1	26.6	11.3	27.0	11.5		10.2	17.8	9.4	14.6	9.9	13.0	5.9	9.4	4.9	8.00	3.2
יינים די		က	48.6	8.02	33.8	17.0	31.4	13.2	28.8	12.3	29.1	12.4	21.4	11.2	19.5	10.3	16.3	7.4	14.5	9.9	10.9	5.7	10.3	3.8
7, 1,0		જ	50.0	21.7	35.9	18.2	33.7	14.2	30.9	13.2	31.2	13.3	53 53	12.2	21.3	11.2	17.9	8.2	16.1	7.4	12.3	6.5	11.8	4.3
Sur		1			35.9	18.3	34.1	14.4	31.4	13.5	31.4	13.5	23.9	12.5	22.0	11.6	18.8	9.8	17.0	6.7	13.5	7.1	13.1	4.9
	Area of Section,	sq. inches.	8.34	3.61	5.98	3.05	5.68	2.40	5.23	.2.25	5.23	2.25	3.98	2.09	3.67	1.93	3.13	1.44	2.84	1.31	2.25	1.19	2.18	.81
	Least Radius of	inches.	.98	.92	.83	92.	.73	17.	.72	69.	92.	.73	99.	.65	.63	.63	.58	.55	.55	.53	.47	.46	.44	.43
	Thickness,	mches.	b-(0)	esta	ct/4	cox	c:4	16	8/4	5	ත 4	is to	LC(OD	16	12/20	10 KG	6 1	= 14	e la	rit	-les	-1 4	- for	1.6
)	Size of Angles.	in inches.	×	X	X	X	2 2 2	×	×	4½ X 3	×	×	×			×	×	$\frac{3^{1}}{2} \times \frac{2^{1}}{2}$	×	×	×	3 ×	×	×

SQUARE ENDS. EQUAL LEGS, SAFE LOADS FOR PASSAIC STEEL ANGLES. USED AS STRUTS OR COLUMNS, IN TONS OF 2000 LBS.
Neutral Axis Diagonal.

11 1		10				1						•										
	⁷ 41	100	32.6	27.7	23.9	19.0	14.1															
	13			80.8	25.8	20.5	15.2	20.4	16.7	13.9	13.1	10.3										
	12			_	27.6	22.0	16.3			15.3	13.3	11.4										
	11	i,		_		23.4	17.4	_			14.6	12.5		,								
in feet.	10						18.5			18.2	15.9	13.6	18.3	15.3	12.9	0.0	7.2					
olumn.	G					26.4	19.6	_				14.7				<u>a</u>	8.1	11.5	9.4	<u>ထ</u> မာ	7.3	6.1
Unsupported length of Column, in feet.	ø	-			35.0	87.8	20.2	31.0	25.5	21.1	18.4	15.8		19.2	16.2	12.4	0.0	13.2	$\frac{10.8}{}$	9.6	8.4	2.0
ted leng	2	,			36.8	29.3	8.13	33.1		9.73	19.7	16.9		_		13.7	9.9	14.9	12.2	10.8	0 .c.	7.9
Suppor	9	÷		_	38.6	30.8	6.23	35.3	29.0		20.9	18.0	·	_	19.4	14.9	10.8	16.6	13.6	12.0	•	8.8
1 1	70	_:				32.2		37.4				19.1	8.68				11.7	18.3			11.	9.7
	4			49.0		33.7		39.6	32.5	27.0	23.5	20.3	32.1	8.98	22.6	17.4	12.6	20.0	16.4	14.5	12.7	10.6
	cc	_:		51.1			26.2	41.7	34.3		24.7	21.2	34.4	28.7	24.2	18.6	13.5		17.8	15.7	13.8	11.5
	c	2						42.7			25.4	21.7	36.7	30.7	25.9	19.9	14.4	23.4	19.2	16.9	14.9	12.4
Jo con V	Area of Section, sq. inches.		10.03	8.52	7.36	5.86	4.36	7.11	5.86	4.86	4.23	3.61	6.11	5.11	4.31	3.31	2.40	3.98	3.25	2.87	2.53	5.09
Least	of n,		1.20	1.20	1.20	1.20	1.20	1.00	1.00	1.00	1.00	1.00	2	08.	8	08.	98.	02.	.70	02.	02.	.70
TPL: almoss	of Angle, inches.		F- X	cal-	-c :	- (d	62/20	201-	4	× — — — — — — — — — — — — — — — — — — —	7 2	ත _් න	50%	117	01 6	10	100	rola	c c	7 2	es/a	75
1-	Angle,		9 × 9	′ ≈	: *	: *	: *	7.0 7.0 7.0	(=	: 3	: *	: "	4 × 4	(=	"	11	"	35 × 35	(=	"	"	"

EQUAL LEGS, SAFE LOADS FOR PASSAIC STEEL ANGLES USED AS STRUTS OR COLUMNS, IN TONS OF 2000 LBS. Neutral Axis Diagonal.

SQUARE ENDS. (Continued.)

HE	PAS	SA	.1(-	R () L	LI	N	G	M	IL	L	C) N	I P	A N	Υ	•	J	169)
	7 2 2 1	_	8.4															ot 30		sover	
	1		တ် -	-	70	4.7											are in	ingths		for lengths over	
	62	3	တ	7.5			6.6		5.1	4.2	3.4						per squ	lbs. tor length	7	- for	30 radii
Unsupported length of Column, in feet.	9	13.4	_	$\dot{\infty}$						4.6	 	5	4.3	က်		ઝ	Strains per square inch	1000 lbs. for lengths of	Tagar	-20	
	ا رة	14.3	Ξ.	ж 9					6.1	5.0	4.1	6	4.8	4	ಐ	2.5	7	12,		13,500	
	ಸು	15.2	Ξ.	9.1	7.6	6.1				5.5			ت ن		-	35 30	1	4.1	3.6	ς; ∞	
	4	16.1	<u>ાં</u>	9.4	ω Θ	6.5				5.9			ις 30			3.0	6.3	4.	4.0		2.4
	4	16.9	က <u>က</u>		χ		10.1	<u>%</u>	7.7	6.4	ნ.ა		6.3		4.3		7.0	5.1	4.5	& 70	2.7
rted len	C2	17.8		10.8	ω 0.	7.5	10.7	9.3	χ ε:	8.9	5.5		6.8				7.7	5.6	4.9	3.9	5.9
oddnsu	က	18.7	14.8	11.3	ი ი	7.6	11.4	6.6	$\frac{\infty}{\infty}$	7.2	5.9	10.0	7.4	6.4	5.0	<u>ထ</u>	8.4	6.1	5.4	4.2	3.2
5	ર્જ	19.6	15.5	11.8	ω. ∞	7.9	13.1	0.5	9.3	7.7	6.5	10.7	7.9	6.8	5.4	4.1	9.1	9.9	υ. ∞.	4.6	3.5
	cs					8. 3.	12.8	11.1	9.9	8.1	9.9	11.4	8.4				8.6	7.1	6.5	4.9	3.7
	- 61 	21.4	16.9	12.9	10.7	8.6	13.5	11.7	10.4	œ re	7.0	12.1	8.0	7.7	6.1	4.7	10.5	7.7	6.7	5.3	4.0
	Н						13.8	15.0	10.7	∞	7.2	12.7	9.3	$\overset{\circ}{x}$	6.4	4.9	11.2	∞ 	7.1	5.6	4.3
Area of	Section, sq. inches.	3.56	2.81	2.15	1.78	1.44	2.31	2.00	1.78	1.46	1.19	2.11	1.55	1.34	1.06	.81	1.86	1.36	1.19	.94	.71
Least Radius of		09.	09.	09.	09.	09:	.50	.50	.50	.50	.50	.45	:45	.45	.45	.45	.40	.40	.40	.40	01,
Thickness	of Angle, inches.	12/20	 0≀	en ∞	10		-,3	7 2	ec xc	- C		01	entoc I	1.6	-14	1.6	0	es/x	201	~\rac{1}{2}	S. E.
	Angle, in inches.	3 × 3	"	"	"	"	$2\frac{1}{2} \times 2\frac{1}{2}$	=		"	"	$2\frac{1}{4} \times 2\frac{1}{4}$, ,,	"	"	"	3 3 3 3	"	"	"	"

UNEQUAL LEGS SQUARE ENDS LOADS FOR PASSAIC STEEL ANGLES AS STRUTS OR COLUMNS, IN TONS OF 2000 LBS. SAFE SED

1- w P ?? 20 33 53.8 40.2 33.1 26.9 33.4 35.118 38.3 16 33.2 26.2 14 Unsupported length of Column, in feet 36.4 26.6 44.2 36.0 ಸ್ರಾಣವ – ∞ 3 ထ တ 00 1 e. 122 330 85348 333 68 33 34.3 25.5 ∞ © m © ≻ 29.1 10 39 50.8 41.5 Two Angles, long legs placed back to back, 1/2" apart. 0 43.3 35.6 26.8 46.8 ರು ಇ ರು ೦ ಇ ∞ rಟ ಚ 8 45 28233 55.2 45.2 37.1 65.2 53.7 39.6 65.0 32.7 1 S 62.3 4 0 ೞ 9 67. 55. 40. 50 25 29 55 96 69.5 57.2 47.5 53.0 259.6 468.9 30.2 25.5 25.5 $\infty - \infty$ 5 71.8 59.0 49.1 36.3 33.7 × 1. 58.3 4 27. 68.2 56.2 45.7 34.8 28.8 62.8 51.6 42.7 32.5 27.0 က sq. inches. Area of Section, 16.68 14.22 11.72 9.72 7.22 11.96 9.84 8.22 6.10 11.36 2.36 5.80 8.80 8.80 10.46 8.60 7.12 5.42 4.50 Least Radius of Gyration, inches. 1.33 1.33 1.33 1.82 1.77 1.72 1.67 $\frac{1.28}{1.26}$. 59 35 .42 .37 1.33 .59 Phickness. inches. 2/2 ⇔ 99/4 colx aclos 00/x0 Angles, in inches. 33 ಣ ಞ Size of X X × = = > 9 C 50

UNEQUAL LEGS SQUARE ENDS. SAFE LOADS FOR PASSAIC STEEL ANGI JSED AS STRUTS OR COLUMNS, IN TONS OF 2000

Two Angles, long legs placed back to back, 1/2 " apart.

(Continued).

3		W I	Iwo Angles, long legs placed back to back, /2 " apart.	long	legs p	acea	Jack to	Dack	2	aparı.				(Continuea)	.(3)	
Size of	Thickness,	Least Radius of	Area of				D	oddnsu	ted len	Unsupported length of Column, in feet.	olumn,	in feet.				
Angles, in inches.	inches.	Gyration, inches.	sq. inches.	භ	41	23	9	7	80	6	10	11	12	13	14	15
4 × 33	(N)-1	1.24	10.46	62.8	60.5	58.0		52.9	50.4	47.8	45.3	42.7	40.2	37.7	35.9	32.6
	rolx	1.25		51.6	49.8	47.7		43.6		39.5	37.4	35.4	33.3	31.2	29.5	27.1
"	7	1.25		42.7	41.2	39.5	37.8	36.1	34.4		30.9	29.5	27.5		24.1	22.4
"	es/x	1.26		32.5	31.4	30.1					23.7		21.1	∞	18.5	17.2
"	16	1.26	4.50	27.0	26.1	25.0	24.0	22.9	21.8	20.2	19.7	18.6	17.5	16.4	15.4	14.3
4 X 3	ıdx	1.23	7.96		46.0	44.1	42.1	40.1	38.3	36	34.3	32.3	30.4	28.4	26.5	24.6
"	· ·	1.25		39.7	38.3	36.7	35.1	33.6	32.0	30	28.8	27.5			25.5	20.9
"	4 ∞ ×	1.26	5.06	30.4	29.3	28.1	26.9	25.7	24.5	£	: ??	20.9		18.5	17.3	16.1
"	- 15 - 15	1.27	4.18	25.1	24.3	23.3	22.3	21.3	20.3	19.3	18.4	17.4	16.4	15.4	14.4	13.4
34 × 3	rcix	1.06	7.34	43.3	41.2	39.1	37.1		32.9	30.8	28.7		24.6			
	_\tag{c}	1.08	00.9	35.5	33.8		30.5		27.2	25	23.9		20.5			
"	$\frac{1}{16}$	1.08	5.42	32.1	30.6	29.1	27.6		24.6		21.5	20.0	18.5	17.0	15.5	
"	co(xc	1.09		જ	25.9		23.4	22.1	50.0			17.1	15.8			
"	100	1.10	3.86	22.9	21.9	8.08	19.7	18.6	17.6	16.5	15.5	14.4	13.4	12.3	11.3	
33 × 23	67	1.10	6.26	37.1	35.4	33.7	32.0	30.3	28.6	98	25.1	23.4	21.7	20.0		
*	-¢:	1.10	5.50	32.6	31.1	9.62	28.1	3	25.1	23.6	22.1	9.08		17.6	16.1	
"	17	1.11	4.96		28.2	8.98	25.5	3	33	21.4		18.7		16.0		
"	co ∤∞	1.11	4.22		24.0	22.8	21.7	8	6	18.2	17.1	15.9	14			
//	12	1.12	3.62	~	8.08	19.8	18.8	17.	16.		14.9	13.	12.9	11.	6.01	
"	 } ⊢ 4	1.12	2.88	17.1	16.4	15.6	14.8	14.0	13.2	12.4	11.7	10.9	10.1	9.3	8.6	

SAFE LOADS FOR PASSAIC STEEL ANGLES USED AS STRUTS OR COLUMNS, IN TONS OF 2000 LBS.

		12	16.4	14.4	13.3	11.2	9.8	7.8	12.8	111.7	10.1	8.9	6.9		ins	inch,	the of	nd less,	_50 <u>_</u>	7	over 20 radii.	
ted.)		11	18.2	16.0	14.7	12.4	10.9	8.6	14.2	13.0	11.2	9.8	7.6		Strains	per sq. inch,	for lengths of	30 radii and less,	13.500—50	Co. 1-	over 30	
(Continued.		10	20.1	17.6	16.2	13.6	11.9	9.4	15.7	14.3	12.3	10.8	8.4	13.1	11.3	9.5	7.7	6.5	8.4			
	feet.	6	21.9	19.2	17.6	14.9	13.0	10.3	17.1	15.7	13.4	11.7	9.5	14.7	12.8	10.7	œ .4	7.4	5.4			
	olumn, ir	හ	23.7	20.8	19.1	16.1	14.0	11.1	18.6	17.0	14.5	12.7	10.0	16.4	14.2	11.9	9.7	∞ ⊗	0.9	7.1	6.1	4.6
apart.	gth of C	1	25.5	22.5	20.2	17.3	15.1	11.9	20.0	18.3	15.6	13.6	10.7	18.0	15.6	13.1	10.7	9.0	9.9	7.9	6.9	5.1
Two Angles, long legs placed back to back, 1/2"	Unsupported length of Column, in feet.	9	27.4	24.1	22.0	18.5	16.1	12.7	21.5	19.6	16.7	14.6	11.5	19.6	17.0	14.3	11.7	8.6	7.2	∞	7.6	5.7
	Unsupp	ಬ	29.5	25.7		19.8	17.2	13.6	23.0	21.0	17.8	15.5	12.3	21.3	18.4	15.5	12.7	10.6	7.9		8.4	6.3
		4	31.1	27.3	24.9	21.0	18.2	14.4	24.4	22.3	18.9	16.5	13.1	22.9	8.61	16.7,	13.7	11.4		10.6	9.1	6.8
		က	32.9	58.9	26.3	22.22	19.3	15.2	25.9	23.6	20.0	17.4	13.9	24.5	21.3	17.9	14.7	12.3	9.1	11.6	6.6	7.4
long le		જ	34.2	30.0	27.2	23.0	19.9	15.7	27.0	24.5	8.03	18.0	14.3	2.92	22.7	19.1	15.7	13.1	9.7	12.6	10.6	7.9
Angles,	Area of	sq. inches.	5.68	5.00	4.54	3.84	3.32	3.62	4.50	4.08	3.46	3.00	2.38	4.36	3.78	3.18	2.62	2.18	1.62	2.14	1.80	1.34
Two	Least Radius of		.93	.93	.94	.94	.95	.g.	66.		.94	.95	.93	8.	08:	08.	.79	08	62.	02.	.71	.72
	Thickness,	inches.	ا مزد	-/5	, ,	ed ×	rej.		-/0	- N	ec 20	22		100	, 1/2.	colx	2		100	G.		1.8
	-	Angles, in inches.	$3 \times 2^{\frac{1}{3}}$	΄ =	"	"	"	"	3 × 2	(=	"	"	z.	21 × 22	=	"	"	"	"	2½ × 15		" 0

SAFE LOADS FOR PASSAIC STEEL ANGLES, USED AS STRUTS OR COLUMNS, IN TONS OF 2000]

Two Angles, placed back to back, $\frac{1}{2}$ apart.

EQUAL LEGS, SQUARE ENDS.

		24	58.2 25.4				th; radii 30 radii,
		22	64.6 28.2				are inc
		20	77.4 71.0 64.6 58.2 33.8 31.0 28.2 25.4	40.9 21.0			Strains per square inch; 12,000 lbs. for lengths of 30 radii and under. 500—50 / for lengths over 30 rad
		18	77.4	46.4 23.8			ains p lbs. for an
	ı feet.	16	83.8 77.4 71.0 64.6 58.2 36.6 33.8 31.0 28.2 25.4	51.9 46.4 40.9 26.6 23.8 21.0	35.2 13.8		Strains per square inch; 12,000 lbs. for lengths of 30 radii and under. 13,500—50 , for lengths over 30 radii
	umn, in	14	90.2 39.4	57.4 29.3	41.1		
	h of Col	12	96.6 42.2	63.0 32.1	47.1 18.4	26.2 14.3 20.8 8.3	
-	Unsupported length of Column, in feet.	10	103 45.0	68.5 34.9	53.0 20.8	30.8 16.6 25.3 10.2	6.8
, 2 I	upporte	ø	109 47.7		59.0 23.1	35.3 19.0 12.0 12.0	16.6 8.7 14.0 5.3 10.7
	Unsi	9	116 50.5	85.0 82.2 79.5 74.0 43.2 41.9 40.5 37.7	73.3 70.7 67.8 64.9 28.8 27.7 26.6 25.4	46.9 44.4 42.2 39.9 24.7 23.7 22.5 21.3 42.7 41.2 38.9 36.7 34.4 17.2 16.7 15.8 14.8 13.9	20.2 10.5 17.6 6.7 14.3 5.4
		20	119	85.082.2 43.241.9	73.3 70.7 67.8 28.8 27.7 26.6	46.9 44.4 42.5 24.7 23.7 22.5 42.7 41.2 38.9 36.7 17.2 16.7 15.8 14.8	27.5 25.7 23.9 22.0 14.2 13.2 12.3 11.4 24.9 23.1 21.3 11.4 9.5 8.8 8.1 7.4 21.5 19.7 17.9 16.1 8.2 7.5 6.8 6.1
		4		85.0 43.2	70.7 27.7	44.4 23.7 38.9 15.8	23.9 21.3 8.1 17.9 6.8
- J (Q		က			73.3 28.8	46.9 24.7 41.2 16.7	25.7 23.1 23.1 23.1 7.5 7.5
٥		જ				42.7	27.5 14.2 24.0 24.0 8.2 8.2 8.2
	Area of	sq. inches.	20.06	14.22	12.22 4.80	7.96 4.18 7.12 2.88	4.62 2.38 4.22 1.62 3.72 1.42
	Least Radius of	Gyration, inches.	1.87 1.88	1.55	$\frac{1.24}{1.24}$	1.04 1.08 .94 .93	27. 20. 30. 30. 30. 30. 30.
	Thickness	inches.	r-j∞ ∞ ×	धा <u>न.</u> धा×	13	70,2	
27	Size of	in inches.	9 × 9 9 × 9	oro XX oro	4 × 4 4 × 4	3.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	25 05 05 05 -12-12-14-14-05 05

JSED AS STRUTS OR COLUMNS, IN TONS OF 2000 LBS. SAFE LOADS FOR PASSAIC STEEL ANGI

Four Angles, placed back to back, 1/2 apart.

EQUAL LEGS. SQUARE ENDS.

	24	169 70.5	$\begin{array}{c} 106 \\ 51.7 \end{array}$	77.9 27.4				h:	12,000 lbs. for lengths of 30 radii and under. 13,500–50 $\frac{L}{\tau}$ for lengths over 30 radii.
	22	177 74.4	121 113 59.4 55.4	99.692.485.2 $36.833.630.5$	$\begin{array}{c} 62.6 \ 56.9 \ 51.3 \ 45.6 \\ 32.1 \ 29.0 \ 26.0 \end{array}$			Strains per square inch:	12,000 lbs. for lengths of 30 radii and under. $500-50\frac{l}{r}$ for lengths over 30 radi
	20	186 78.4	121 59.4	92.4 33.6	$\begin{array}{c} 56.9 \\ 29.0 \\ 26.0 \end{array}$	42.4		er son	for lengths and under, or lengths
	18	194 82.3	128 63.2		26.9 29.0	53.2 47.8 42.4 19.5 17.1		rains r	1 lbs. fo a1 50 \frac{\lambda}{\tau} fo
feet.	16	203 86.3	$\begin{array}{c} 135 \\ 67.0 \end{array}$	$\frac{107}{39.9}$			28.5 13.7	24.5	12,00
lumn, in	14	$\frac{211}{90.2}$	142 70.8	114 43.0	68.2 35.1	58.5 21.9	32.7 16.0	9.8.8	23.1
Unsupported length of Column, in feet.	12	220 94.1	149 74.7	121 46.1	73.8	63.9 24.3	37.0 18.3	32.8 11.5	9.3
ed lengt	10	229 98.1	157 78.5	129 49.2	79.4 41.2	69.3 26.7	41.2	36.9 13.2	30.8
upporte	00	237	164 82.3	$\begin{array}{c} 136 \\ 52.4 \end{array}$	85.1 44.2	74.7	45.4 23.0	40.9	34.7
Uns	1	241 104	167 84.2	139 53.9	87.9 45.8	77.4	47.6	42.9 15.8	36.7
	9		171 86.1	147 143 57.6 55.5	95.5 93.5 90.7 50.2 48.8 47.3	85.482.880.1 $34.032.831.6$	55.5 53.9 51.8 49.7 28.6 27.6 26.5 25.3	50.648.947.045.0 19.218.417.516.6	44.4 42.5 40.5 38.6 16.7 15.9 15.0 14.2
	73			147 57.6	95.5 93.5 50.2 48.8	82.8 32.8	51.8 26.5	47.0 17.5	40.5 15.0
	4				95.5 50.2	85.4 34.0	53.9 27.6	48.9 18.4	42.5 15.9
	တ						55.5 28.6	50.6	44.4
Area of	sq. inches.	40.12	28.44 14.44	24.44 9.60	15.92 8.36	$\frac{14.24}{5.76}$	9.24 4.76	8.44 3.24	7.44 2.84
Least Radius of	Gyration, inches.	2.83	2.38	2.03	1.70	1.59	1.31	1.25	1.15
Thickness of Angles	inches.	다 (2) 20	ಚಿ4 ಚಿ∞	13 16 16	\$ \frac{5}{16}	छ ८ ४	43 44	2 10 10	2 16
Size of	in inches.	9 × 9 8 × 9	oro XX oro	4 × 4 4 × 4	$\frac{3\frac{1}{2} \times 3\frac{1}{2}}{3\frac{1}{2} \times 3\frac{1}{2}}$	3 × 3 3 × 3	$2\frac{1}{2} \times 2\frac{1}{2} \times 2\frac{1}{2} \times 2\frac{1}{2}$	$\begin{array}{c} 24 \times 24 \\ 24 \times 24 \\ \end{array}$	SS SS SS

MAANNEL COLUMNS, SQUARE ENDS, IN TONS OF 2000 LBS., SAFE LOADS FOR PASSAIC STEEL LATTIC

For the following unsupported lengths of columns.

Depth of

													<u> </u>										
	28 ft.																03	30	97	000	30 30	00	
under. ii.	26 ft.																61	# 31	31 30	30 31	989	07	ly.
lengths of 50 radii and un for lengths over 50 radii.	24 ft.							13	91	÷1	31	SI S	00	90 90 90	0+	**	31 33	31	99	30 44	90	21	ective
50 rad	22 ft.							051	31	4	63	31	98	+ 1	45		+31	\$1 \$1	90 91	96	0#	7	D rest
ths of grangths	20 ft.	*	9	17	<u>.</u>	51	01 [2	ei Gi	31 31	9	60	00	000	**	9#	51	97	65	60	25	43	\$	d or
12,000 lbs. for lengths of 50 radii and under. 15,000—57 $\frac{l}{r}$ for lengths over 50 radii.	18 ft.	15		61	31 33	61 4	31 X	e1 e0	e1 70	61 80	34	33	#	24	50	54	53	8	900	66	45	20	istances
12,000 lbs. f	16 ft.	16	19	21	<u>\$</u>	91 [2	08	4.5	91	900	98	55	#	50	00	58	831	3130	32	41	2+	533	n the di
; { 12,0	14 ft.	18	0; 0;	33	96	61	01 02 03	97	ei Gi	≅	SSS	0+	<u></u>	30	99	61	30	89	68	=	50	55	less tha
re inch	12 ft.	19	31	71	er Se	50	55	51	000	65 65	40	3	6#	56	59	65	81	500	Ŧ	45	61	58	ted not
Allowable strains per square inch	ıı ft.	02	 	ş	83	91 92	SS SS	821	<u></u>	34	Ţ	44	51	57	99	99	31	99	67	91	00	99	separa
strains I	10 ft.	02	33	97	0°5	00	68	851	31	33	3	45	31	58	33	89	13	50	긲	46	55	9	ion, and
wable	9 ft.	197	71	61	 	750	+1	31	31	60 100	3	4	61	30	33	69	91	300	3	91.	55	99	y of act
Allc	8 ft. or less.	<u>-</u>	- -	31 30	::	34	3	82	35	30 70	31	45	52.5	55	35	69	5	30	3	+6	55	09	ure unit
st Radius, yration, nches.	of G	1.93	1.86	1.82	1.93	1.89	1.85	30.00	31.00	01	01	01 01 00 01	2.21	91 81 80	97.7	31	9.70	19.5	55.55	5.69	60.5	10.00	er to ens
rea of ection, inches.	S	3.55	4.11	4.70	5.1x	5.72	6.95	4.70	5.29	5.88	96.9	7.55	8 61.50	9.70	10.3	11.5	5.55	5.81	6.98	7.60	8.18	9.95	ed togeth
D		4.6	4.5	+.+	4.8	s;	4.6	5.6	5.4	:0 :0	s, s	5.7	5.5	5.9	5.9	5.S	6.8	6.1	0.9	6.4	6.5	6.1	st be lattic
d, inches.		si x	31	r Si	61 6	ei io	31 30	20.00	***	30 30	93 93	 1.	o.	31 30	r si	9:0	60.4	4.1	4.0	4.0	00	3.6	nels mus
eight of each nannel, per ft.	CF	9	[•	x	c	10	31	30	6	10	27	32	15	17	18	03	6	10	27	100	15	17	The channels must be latticed together to ensure unity of action, and separated not less than the distances d or D respectively.
annels,	ut	10	"	=	"	- "	*	9	=	"	- "	"	*	"	"	:	[o	"	"	*	*	:	

COLUMNS, SQUARE ENDS, IN TONS OF 2000

For the following unsupported lengths of columns.

		40 ft.													35	33	41	46	55	64	-
		36 ft.							30	31	34	38	41	46	38	43	45	50.	09	20	
		32 ft.							33	33	37	41	45	51	42	46	49	55	99	22	
	d under, iii.	30 ft.	25	27	65	33	33	33	35	36	33	43	47	54	43	48	51	22	69	81	-
	radii and er 50 radii	28 ft.	98	88	31	34	37	41	36	37	41	45	20	22	45	20	ي	53	7	84	
	r lengths of 50 rad for lengths over	26 ft.	88	<u>0</u>	35		33	44	38	33	42	47	55	59	46	52	55	61	74	87	-
	for leng $\frac{l}{r}$ for len	24 ft.	68	31	34	37	42	46	39	41	43	49	54	23	48	54	57	63	77	91	
	12,000 lbs. for	22 ft.	31	33,	33	38	44	48	41	42	45	50	26	64	49	55	59	65	8	94	
0	inch: $\left\{ \begin{array}{l} rz \\ rg \end{array} \right.$	20 ft.	35	34	37	40	46	51	42	43	47	25	28	29	51	57	19	29	83	86	
	Allowable strains per square inch: $\begin{cases} 12,000 \text{ lbs. for lengths of 50 radii and under.} \\ 5,000-57\frac{L}{r} \text{ for lengths over 50 radii.} \end{cases}$	18 ft.	333	36	33	45	48	53	44	45	49	54	99	69	53	59	63	69	88	101	
0	rains per	16 ft.	35	37	40	43	20	55	45	48	21	56	33	22	53	09	64	7	88	105	
	wable st	14 ft.	36	33	45	45	25	58	46	49	53	56	64	74	53	09	64	77	88	106	-
	Allo	rz ft. or less.	36	40	43	46	54	09	46	49	53	56	64	74	53	09	64	7	88	106	-
	dius of ration, sches.	$ R_{a} $	3.08		36.8	3.07	2.97	2.90	3.46	3.40	3.36	3.48	3.40				3.73				
	rea of inches,	*bs	00.9	6.59	7.18	7.60	8.78	9.97	7.60	8.19	8.79	9.40	9.01	12.4	8.80	10.1	10.7	8.11	14.7	17.6	
	Ď	nemes.	7.1			2:5			6	<u>∞</u>	7.7		0	7			9.8		9	4	-
	d,		5.0	4.9	8.8		4.7	4.5	5.7	5.6	5.5	5.5	5.3	5.1	1		0.9			5.4	
	of each annel, per ft.	·sqi	10	11	12	13	15	17	13	14	15	16	18	51	15	17	180	20	25	30	-
	pth of ches. ches.	ui Cha	œ	"	"	"	"	"	6	"	*	"	"	"	10	"	"	"	"	"	

The channels must be latticed together to ensure unity of action, and separated not less than the distances d or D respectively.

Depth of

CHANNEL COLUMNS, SQUARE ENDS, IN TONS OF 2000 LBS, SAFE LOADS FOR PASSAIC STEEL LATTICED

SSAIC	ROL	, L I	N (ż	M	ΙL	L	CC) М Р	A	NΥ	ζ.		1
	52 ft.								84	82	66	109	120	
under Iii.	48 ft.	46	55	56	61	29	75	92	88	93	105	116	158	_
lengths of 50 radii and w for lengths over 50 radii.	44 ft.	49	26	09	:9	33	79	88	93	800	111	153	135	
50 rad is over	40 ft.	53	09	65	71	200	32	8	88	103	117	130	143	
ths of length	36 ft.	57	64	69	26	88	91	95	102	108	123	136	151	
for leng $\frac{l}{r}$ for	32 ft.	09	69	74	81	86	97	105	107	113	129	143	159	
12,000 lbs. for lengths of 50 radii and under. 15,000 — 57 $\frac{l}{r}$ for lengths over 50 radii.	30 ft.	63	71	92	83	6	100	105	109	116	132	147	162	
): \$ 12,0 1: \$ 15,0	28 ft.	64	55	7.9	82	94	103	109	111	118	135	150	166	
are inch	26 ft.	99	55	81	88	97	106	112	114	121	138	153	170	
Allowable strains per square in	24 ft.	29	22	~	90	100	109	116	116	124	141	157	174	
strains	22 ft.	69	73	98	93	102	112	119	116	124	143	158	176	
owable	20 ft.	71	8	82	99	105	115	122	116	124	142	158	176	_
All	18 ft or less.	7.1	88	8	95	106	116	123	116	124	142	158	176	
st Radius Jyration, nches.) to	4.59	4.47	4.39	4.54	4.42	4.34	4.29	5.64	5.53	5.40	5.29	5.21	=
sa of Sec- n, sq. ins.	Are tioit	11.8	13.6	14.8	15.8	17.6	19.4	90.6	19.4	9.08	23.6	26.4	29.4	
D , Inches.		10.4	10.2	10.0	10.5	10.2	10.1	10.0	12.7	12.5	19.5	12.0	11.8	
d, Inches.		7.7	7.4	7:3	7.4	7.1	0.7	6.9	9.5	9.4	9.1	8.9	8.7	_
ghtofeach nnnel, lbs. er foot.	Срэ	50	33	25	22	30	89	35	83	32	40	45	20	
nches.	io Io	15	"	*	"	"	"	*	15	"	*	*	*	

The channels must be latticed together to ensure uniformity of action, and must be separated not less than the distances d and D respectively.

SAFE LOADS FOR PASSAIC STEEL I BEAMS USED AS STRUTS OR COLUMNS,

Beams Supported against Yielding Sideways. IN TONS OF 2000 LBS., SQUARE ENDS.

						_							_		_						
	40 ft.	137	121	114	66	118	103	95	88	33	109	103	84	25	52	78	89	[0]	51	44	40
	38 ft.	139	123	116	101	120	105	97	<u>S</u>	83	111	105	98	77	09	$\overline{\infty}$	20	63	35	45	41
	36 ft.	141	125	118	102	155	107	66	91	8 10	114	107	84	33	61	84	73	65	54	46	. 42
	34 ft.	143	127	119	104	124	108	100	93	98	116	110	68	74	62	98	74	29	55	47	43
	32 ft.	145	128	121	105	126	110	102	94	82	119	112	91	92	64	88	92	69	22	49	44
in feet.	30 ft.	147	130	123	106	128	112	104	96	68	121	114	93	77	33	91	78	71	7.7 80	<u>0</u>	45
Beam,	28 ft.	149	132	125	108	130	114	105	97	06	124	117	94	9 <u>7</u>	99	94	08	33	53	25	46
Unsupported length of Beam,	26 ft.	151	134	156	109	132	116	107	66	91	126	119	96	08	67	96	88	75	61	53	48
rted ler	24 ft.	154	136	128	111	134	117	109	101	93	129	121	86	88	69	-66	88	92	63	54	49
oddnsu	22 ft.	156	138	130	113	136	119	110	102	94	131	124	100	83	20	101	82	78	64	55	20
D	20 ft.	158	140	132	114	138	121	112	104	96	134	126	101	88	71	104	68	80	65	57	21
	18 ft.	159	141	133	115	140	123	114	105	97	136	128	103	98	72	106	91	33	67	28	25
	16 ft.	159	141	133	115	141	124	115	106	97	139	131	105	84	74	109	93	84	89	59	23
	14 ft.	159	141	133	115	141	124	115	106	97	141	133	106	88	74	111	SS	98	20	09	55
	12 ft. or less.	159	141	133	115	141	124	115	106	97	141	133	106	88	74	114	26	88	71	62	26
ius of ation, ses.	Gyr			7.53		6.94	6.87	6.81	6.94	7.08	5.64	5.72	6.05	6.00	5.90	4.55	4.72	4.65	4.90	4.77	4.88
lo si inoi:	oəs			22.1		23.5	20.6	19.1	17.6	16.2	23.5	22.1	17.6	14.7	12.4	19.1	16.2	14.7	11.8	10.3	9.3
ight Foot,	per	06	88	75	.e	a	38	. FE	99	52	<u> </u>	75	09	200	42	65		500	40	35	314
hth of hes.	કરાં	000	*	"	"		2 *		"	"	15	"	"	"	"	19	*	"	"	"	* C

70
22
Z
\sim
UTS OR COLUM
-
-
\sim
(7)
02
_
\sim
70
92
50
~
^
-
5
\mathcal{O}
\sim
,
02
-
1
4
F-7
\sim
_
ш
-
5
-
(+)
-
-
70
02
77
\mathcal{L}
_
1
-7
02
05
34
V
0
1
0
-
0
9
7
-0
Ω
SS
DS
ADS
ADS
OADS
OADS
LOADS
LOADS
LOADS
E LOADS
E LOADS
FE LOADS
AFE LOADS FOR PASSAIC STEEL T BEAMS USED AS STRUTS

OF

LONS

Z

S

10 00 0 100 h £. (Continued.) and under. £, 13,500-50 tor lengths over 30 radii 12,000 lbs. for lengths of 30 radii Strains per square inch ∞ ∞ بن $r_0 \infty$ 1 00 cv 00 0 ~ ft. Beams Supported against Yielding Sideways. f. 36.7 Unsupported length of Beam, in feet 35.7 ij. 20 ft. € 600 ∞ 1/ co 7.10 نۍ ゼ 20. ಣ ∞ 9 5 e: بڻ V 53.9 ين $\dot{\infty}$ 35.0 23.3 S ∞ 0. 1 £, £ 25 ∞ $\frac{\infty}{2}$ ∞ ဗ္ကေလ ∞ **≈** ○ ∞ ₹ $\infty \infty$ ij, ∞ 2000 LBS., SQUARE ENDS. $\infty \infty \infty \infty$ 3 4 31.2 ~ ∞ S S 15.0 نۍ ∞ $\infty \infty$ ∞ Q ಣ بن $\infty \dot{\infty}$ ft. less. 3 4 8 3 22.8 or] Gyration, inches, 50 80 63 53 Radius of ಣ ကကကက ကကက જાં જાં અં લં ર છ \neg 6.4 5.2 $\infty \approx \infty \approx$ 9.7 7.9 6.8 6.8 *sur *bs ₹ ∞ on 0 0 00 Area of Section, ₹. 4 ಣ 00 00 - 'sqI 0 to 20 Weight, 8888 22 18 esəqoui Beam, 2 2 = = - \mathfrak{D} = ~ × = S = = = Depth of

SAFE LOADS FOR PASSAIC STEEL T BEAMS USED AS STRUTS OR COLUMNS,

SAFE LOADS FOR PASSAIC STEEL I BEAMS USED AS STRUTS OR COLUMNS,

red.)		15 ft.	30.0	0.2	18.1	16.1	23.1	20.1	13.1	12.5									1301	Taur.	radii.	
(Continued.)		14 ft.	33.3	29.8	20.9	18.3	25.9		15.5	14.4			10.0					re inch	e of 30	r.	over 30	
		13 ft.	36.6	32.7	23.6	20.2	28.8		17.9	16.4	20.2	17.5	11.8	14.3	9.3			er squa	r Ienoth	and under	lengths)
Sideways.		12 ft.	40.0	35.5	26.4	22.7	31.6	26.7	20.3	18.4	22.8	19.4	13.6	16.2	10.8			Strains per square inch	19 000 lbs for lengths of 30	an an	$13,500-50^{-1}$ for lengths over 30 radii.	7
ling S		11 ft.	43.3	38.3	29.1	24.9	34.4	30.0	3	20.3	25.3	21.4	15.4	18.0	12.4	11.3	8.0	0.2	19 00	14,00	13,500	,
Supported against Yielding	in feet.	10 ft.	46.6	41.2	31.9	27.1			25.25	22.3	27.9	23.4	17.2	19.9	14.0	13.0	9.5	9.8	9.9			
gainst	Beam,	9 ft.	49.9	44.0	34.6	29.3	40.1	33.4	27.6	24.5	30.4	25.4	19.0	21.7	15.5	14.7	11.0		7.9			
rted a	ngth of	8 ft.	53.2	46.8	37.4	31.6	42.9	35.6	30.0	26.2	33.0	27.4	8.03	23.6	17.1	16.3	12.4		9.5			
Suppo	Unsupported length	7 ft.	56.6	49.7	40.1	33.8	45.7	37.8	32.4	28.5	35.5	29.3	22.5	25.5	18.7	18.0	13.9		10.5	8.5	9.9	4.0
Beams Not	Jusupp	6 ft.	59.9	52.5	42.9	36.0	48.6	40.0	34.8	30.1	38.1	31.3	24.3	27.3	20.5	19.7	15.4	16.2	11.8	10.1	2.00	5.5
Beams		5 ft.	63.2	55.4	45.6	38.5	51.4	42.2	37.2	32.1	40.6	33.3	26.1	29.5	21.8	21.3	16.9		13.1	11.7		6.3
		4 ft.	66.5	58.5	48.4	40.4	54.5	44.5	39.7	34.0	43.2	35.3	27.9	31.0	23.4	23.0	18.4		14.4		10.5	7.5
ENDS.		3 ft.	69.6	61.0	51.1	42.6	57.0	46.7	42.1	36.0	45.7	37.3	29.7	32.9	25.0	24.7	19.8		15.7	14.8		8.7
SQUARE		2 ft.	8.02	8.19	52.8	43.8	58.5	47.4		37.2	47.4	38.4	31.2	34.2	26.4	26.3	21.3		17.0	16.4	12.5	8.6
		ı ft.	20.8	61.8	52.8	43.8	58.3	47.4	43.8	37.2	47.4	38.4	31.2	34.2	26.4	26.4	9.12		17.4	17.4	13.2	10.8
LBS.,	us of tion, tes,	Radi Gyra Incl	1.07	1.09	96.	66.	1.03	1.07	16:	.95	.93	.97	.87	36.	.84	62.	.73	.72	.67	.55	.56	.47
OF 2000	*su	Ares Sect i .ps	11.8	10.3	$\frac{\infty}{\infty}$	7.3	9.7	7.9	7.3	6.2	7.9	6.4	5.2	5.7	4.4	4.4	3.6	1 .	5.0	2.9	2.5	1.8
TONS		Wei For F	40	35	30	25	83	27	25	51	27	33	18	08	15	15	15	13	0 84	10	700	9
IN	res•	Dept Bea Inch	10	"	"	"	6	"	"	"	σ	"	"	2	*	9	"	5	"	4	"	"
			_					-	_	_	٠	_		_		-		1	_			

AND ANGLE COLUMNS, SQUARE ENDS, IN TONS OF 2000 LBS. SAFE LOADS FOR PASSAIC STEEL PLATE

	22 ft.			8644831
under.	20 ft.			238825
engths of 50 radii or und for lengths over 50 radii.	18 ft.		88888	\$25.00 \$2
is of 50 ngths o	16 ft.	21 27 40 46	888888	425588 888888 88
r length	14 ft.	24 32 46 52	35 75 65	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13
12,000 lbs. for lengths of 50 radii or under. 15,000 – 57 $\frac{l}{r}$ for lengths over 50 radii.	12 ft.	2223	35 45 17	55 66 77 89 101 110
5 12,000 5 15,000	11 ft.	8888	37 47 66 74	57 69 80 92 105 114
e inch:	ro ft.	85 58 65	39 49 69 77	60 109 118
Allowable strains per square inch	9 ft.	34 69 69	14 25 11 18	62 74 86 99 112 122
rains pe	8 ft.	35 45 25	42 74 74 84	64 77 89 102 116 126
vable st	7 ft.	37 48 67 75	44 77 77 87	65 79 90 103 117 126
Allor	6 ft. or less.	39 50 70 78	55 78 78	65 79 90 103 117 126
st Radius Jyration, nches.) to	1.24 1.26 1.34 1.38	1.46 1.49 1.56 1.60	1.67 1.72 1.72 1.75 1.75 1.78
-sa of Sec-		6.74 8.52 11.71 13.00	7.51 9.43 12.98 14.50	10.86 13.12 14.98 17.24 19.50
ght of Col- n, lbs. per foot.	i ₉ W mu	22.9 29.0 39.8 44.2	25.5 32.1 44.1 49.3	36.9 44.6 50.9 58.6 66.3 71.1
ckness of ate and	\mathbf{d}	4 4 7 76 16 1 16 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 4 15 16 16 16 16 16 16 16 16 16 16 16 16 16	100 100 100 100 100 100 100 100 100 100
ize of nedes, sector	7	₹₹×£	37×37	8 × 4
idth of Plate, nches.		စစစစ	4444	∞∞∞∞∞∞ *

SAFE LOADS FOR PASSAIC STEEL PLATE

_																			1
1		30 ft.											65	22	ගි	105	116	129	145
	nder.	28 ft.											20	83	86	112	123	138	154
	so radii or under.	26 ft.					42	22	61	22	8	35	75	8	105	120	131	146	163
		24 ft.	38 94	₹.	74 74	81	46	27	29	χ. 20	88	66	08	94	112	127	139	154	172
	for lengths of $\frac{l}{m}$ for lengths	22 ft.	3 대	9	7.50	88	51	33	<u>3</u>	8	94	106	82	100	118	134	147	163	181
	.લ ~ાક	20 ft.	46 56	99	88 44	96	55	67	28	8	101	114	90	106	125	142	155	171	190
	12,000 lbs. 15,000—57	18 ft.	02 13	78	38 38	104	53	22	88		108	131	96	112	131	149	163	180	199
disapported tengting of commission	~:·	16 ft.	35 35	77	10.5	111	63	77	8	103	114	129	101	118	138	156	170	188	808
Ton Britis	Allowable strains per square inch	14 ft.	25	888	380	118	29	8	94	109	121	136	106	124	144	164	178	197	918
por red	ins per	12 ft.	38	88	116	126	7.1	98	100	115	128	143	111	130	151	171	186	202	224
	ble stra	11 ft.	38	ಕ್ಷ	120 120 120	130	E	68	102	118	131	147	114	133	152	172	186	202	224
tile iono wing	Allowa	10 ft.	£ 88	94	3 3 3 3 3	133	75	91	105	121	134	150	114	133	152	172	186	202	224
01 1110		9 ft. or less.	5.48	97	127	137	92	36	106	122	134	150	114	133	152	172	186	205	224
	t Ra- is of 'n, ins.	uib	1.90	1.97	2.07 2.04	80.2	2.13	2.17	2.21	2.25	2.29	2.34	2.51	2.55	5.60	2.64	2.69	2.73	2.78
	a of tion, re ins,	oəg 🗀			18.74 21.18	22.83		15.35				24.97		22.17		28.67		34.17	37.44
	ght of imn, ger ft.	Coli	40.2	55.4	63.7 72.0	9.77	43.3	52.5	59.9	68.8	0.94	84.9	64.4	75.4	86.5	97.5		116.2	127.3
1	kness ins.	of Pla	10	16	અં_ ન્યત્ર	• rcl∝	15	en/oc	2/2	- 34	16	rc¦∞	ml∞	72		6	rc/so	111	හ / 4
	e of sains.		8	×	₹ <u>₹</u>			8	3 >	× '	3				Þ	×	9		
J	lo di .sni ,e	Wid Plate	ာက	တ	ာ တ	6	10	10	10	10	10	10	12	25	12	12	125	12	125

AND ANGLE COLUMNS, SQUARE ENDS, IN TONS OF 2000 SAFE LOADS FOR PASSAIC STEEL PLATE

1 110011																		
	40 ft.				-					173	178	188	194	200	808	213	221	556
ınder.	36 ft.	140	146	154	161	169	176	183	190	197	205	212	219	956	234	240	248	254
adii or un 50 radii.	32 ft.	159	166	174	182	190	198	202	213	221	553	236	244	252	560	267	275	585
ngths of 50 ra lengths over	30 ft.	168	176	184	192	201	506	217	224	232	241	249	257	264	273	580	583	596
lengths r lengtl	28 ft.	178	186	194	203	212	220	878	536	244	253	261	270	277	586	294	305	310
lbs. for ler $-57\frac{l}{r}$ for $ $	26 ft.	187	196	205	213	222	231	239	247	256	265	273	283	590	299	307	316	324
12,000 lbs. for lengths of 50 radii or under. 15,000 $-57\frac{l}{l}$ for lengths over 50 radii.	24 ft.	197	205	215	224	233	241	250	259	898	277	285	596	303	312	321	330	338
~:~	22 ft.	908	215	225	234	243	252	261	270	083	586	297	308	316	325	334	342	353
square inch	20 ft.	216	225	235	245	254	263	273	282	262	301	310	321	328	338	348	357	366
ins per	18 ft.	225	235	245	255	265	274	284	293	303	313	322	333	341	351	361	371	380
Allowable strains per	16 ft.	235	245	255	998	275	285	295	305	315	325	334	345	354	364	375	384	394
Allowa	14 ft.	244	255	265	928	988	596	306	316	327	337	345	356	365	375	385	395	405
	rz ft.	248	259	898	277	888	868	307	317	328	337	345	356	365	375	385	395	405
st Ra- lo su tr'n, ins.	di Gyrs	2.98	3.00	3.04	3.07	3.10	3.12	3.14	3.16	3.18	3.19	3.22	3.23	3.25	3.26		3.29	
ea of are ins.	eS.	41.44	43.07	44.69	46.32	47.94	49.57	51.19	52.85	54.44	56.07	57.69	59.32	60.94	62.57	64.19	65.82	67.44
ght of umn, per ft.	[0]	140.9	146.5	152.0	157.5	163.0	168.5	174.0	179.6	185.1	190.6	196.2	201.7	207.2	212.8			•
ces, ins.	J O	-42	ر مار	-C(2	- T	- CO	÷	7 70	6	-	7	0	c ex				7	
to noii	C ^o l				•9	pi.	X	11	\flat	31 (,, !	9 9	je:	du	Y) T			•

IND ANGLE COLUMNS, SQUARE ENDS, IN TONS OF 2000 SAFE LOADS FOR PASSAIC STEEL PLATE

																- '			
,		44 ft.									222	230	238	246	254	198	569	277	586
?	under. i.	40 ft.	177	187	196	202	213	223	231	240	249	257	998	274	283	291	506	308	317
	50 radii or under over 50 radii.	36 ft.	200	210	550	556	238	248	257	998	275	285	294	303	312	320	330	339	348
	ngths of 50 ra lengths over	32 ft.	555	233	243	253	563	273	283	293	305	312	322	331	341	350	360	370	380
	lengths or lengt	30 ft.	234	245	255	265	576	586	596	306	315	325	335	346	356	365	375	385	395
	12,000 lbs. for lengths of 15,000—57 $\frac{L}{r}$ for lengths of	28 ft.	245	256	267	277	288	298	308	319	329	333	349	360	370	380	390	401	411
ins.	12,000	26 ft.	256	898	279	530	301	311	321	335	342	353	363	374	385	395	405	416	426
or colum	inch:	24 ft.	898	580	291	305	313	324	334	345	356	366	377	388	399	410	421	435	442
engins	square inch	22 ft.	279	291	305	314	326	336	347	358	369	380	391	405	414	454	436	447	458
oorted I	ains per	20 ft.	290	300	314	326	338	349	360	372	385	394	405	417	428	439	451	463	473
dnsun	Allowable strains per	18 ft.	305	314	356	338	351	361	373	385	396	407	419	431	443	454	466	478	489
gumoni	Allow	16 ft.	313	326	338	350	363	374	386	398	409	421	433	445	457	469	481	492	503
For the following unsupported lengths of		r4 ft. or less.	324	335	346	357	368	380	391	405	413	425	436	447	458	470	481	492	503
L	sst Ra- ius of at'n, ins.	p	3.25	3.30	3.33	3.37	3.40	3.44	3.46	3.49	3.52	3.54	3.56	3.58	3.60	3.62	3.64	3.66	3.68
	rea of scrion, tare ins.	S	53.94	55.82	57.69	59.57	61.44	63.32	65.19	67.07	68.94	70.82	72.69	74.57	76.44	78.32	80.19	85.07	83.94
	ight of Jumn, per ft.	oj –	183.2	189.8	196.1	9.203	8.808	215.3	221.6	228.1				253.6					285.4
	ickness Cover tes, ins.	lo	1-123	6	rcloc	111	හ 4			10	1	116	~ x	13	77	1_{16}^{5}	coloc	17	12
,	lo noite					•ə	ρι.	X	//t	['s · X	1,0) S	કૃષ્ટિ	gu	A ;	8			

CHANNI	2000 LBS.,
STEEL	TONS OF 2
SAFE LOADS FOR PASSAIC STEEL CHANNI	COLUMNS, Square Ends, in tons of 2000 lbs.,
TE LOADS	COLUMNS,
SAI	

m

 $\mathbf{B} = 3\frac{7}{4}$

For the following unsupported lengths of columns.

28 ft. 5000 3888 888325888 8 12,000 lbs. for lengths of 50 radii and under ij, 50 53 2382 33 888 46888888 92 for lengths over 50 radii ft. 88 39 12 4 8 8 388 8282888 34 24 ft. 448 50 00 222 34 8888889 22 633 49 65 53 ₹5¢ 33 2866827 ء]د بن 3 482 722 8248 855558 15,000-57 8 نن 27.28 44 38.5 8888 91 Allowable strains per square inch بن 258 888 47 25 25 107 113 128 138 134 140 140 14 888 848 53 66 66 8243 91232164 43323144 13 62 62 426 £55 6128844 12 57 63 69 82183 51 H ro ft. or less. 100 55 2887 87 80 90 Gyrat'n, ins. 33 33 33 8888 222 8884448 3 to suib જું છું છું છું છું છું છું જાં જાં જાં જાં જાં જાં ાં લં લં Least Ra-જ square ins. 2 96 222 222222 Section, 110. ∞ **E** 4 8126 3 6223333 Area of Column, lbs. per ft. 40000 00 m 04 500 87.28 50000 53 833 Weight of Plates, ins. 49 200 4 -100 10 \$ (x) of Cover 6 2 ac/o 100 4 color -]0 99/4 Thickness lbs. per ft. Weight of dannel, \odot ਨੌ 00 = = = * = × > 2 channels 6" deep and 2 cover plates 8" wide. Designation.

6" Channel Column;

SAFE LOADS FOR PASSAIC STEEL CHANNEL COLUMNS, 8=42"

SQUARE ENDS, IN TONS OF 2000 LBS.,

C=63//

					_											
		32 ft.	₩ 66 68 76 68	47	20	54	38	64	89	71	75	92	R R	:9	<u>6</u> 8	93
	under.	30 ft.	99 99	50	53	28	65	69	33	92	80	Z	$\overset{\infty}{x}$	<u> </u>	96	100
	adii and 50 radii.	28 ft.	38 54	83	57	629	99	7.4	200	88	98	8	<u></u> 5	8	103	107
	of 50 ralls over	26 ft.	40	56	99	99	25	79	88	82	<u>e</u>	56	100	105	110	114
	lengths or lengt	24 ft.	43	59	64	69	74	88	80	93	97	100	107	112	116	121
	12,000 lbs. for lengths of 50 radii and under. 15,000—57 $\frac{L}{r}$ for lengths over 50 radii.	22 ft.	45 50	39	67	3	28	88	83	86	103	106	113	118	123	129
111130	12,000	20 ft.	53	65	71	22	<u>88</u>	83	88	103	109	112	119	125	130	136
01 00101	inch:	18 ft.	500	89	7.4	8	98	88	103	109	114	118	125	131	137	143
cing mis	square	16 ft.	52	12	22	85	06	102	108	114	120	134	132	138	143	150
borred	uns per	14 ft.	54	74	08	68	94	107	113	119	126	130	139	144	150	157
ducum s	Allowable strains per square inch	13 ft.	56	75	33	8	96	109	116	122	129	133	142	147	154	191
OTTO WATER	Allowa	12 ft.	57	77	8	36	98	112	119	124	131	136	145	150	157	164
of the following thisupported lengths of columns		or less.	58	79	98	93	100	114	122	127	134	140	148	154	161	168
Y	sst Ra- ius of at'n, ins.	р	2.71	2.76	2.75	2.73	2.73	2.66	29.8	2.65	2.65	3.64	2.64	5.64	2.64	3.63
	rea of sction, tare ins,	95	9.72		14.35	15.48	16.60	18.95		21.20	_	23.45				
	ight of Jumn, per ft.	စ္ပ	33.1 36.9	10	00	52.6	4	1		72.1						
	ickness Cover tes, ins.	of Plat	-14 -c/-	2	(a) x	77	- 25		5 2	rejx	100	eo 4		~ ∞	cco	
	ight of Channel, per ft,	rsq r Gscp M. [©]	00	13	13	13	133	17	17	17	17	17	17	17	17	17
)	gnation.			gnne												4

SAFE LOADS FOR PASSAIC STEEL CHANNEL COLUMNS, SQUARE ENDS, IN TONS OF 2000 LBS.,

 $\mathbf{B} = 5\frac{7}{8}''$ $\mathbf{C} = 7\frac{3}{4}''$

			<u> </u>	
	36 ft.	39	0248 88 88 88	69 77 77 88 88 89 101
for lengths of 50 radii and under. $\frac{L}{r}$ for lengths over 50 radii.	34 ft.	41 46	62753	73 78 86 86 86 95 95 108 108
ngths of 50 radii and 1 lengths over 50 radii.	32 ft.	44 49	26 65 70 70 70	78 83 87 92 97 101 106 110 115
50 rac	30 ft.	46	55 65 77	82 87 92 97 103 1103 1112 1122 1123
gths of	28 ft.	49	3228	87 91 97 102 108 113 118 123 123
for leng $\frac{l}{r}$ for le	26 ft.	52	8558	92 102 108 114 1119 125 136
	24 ft.	52	68 72 86 86	96 101 107 113 113 125 131 131 143
12,000 lbs. 15,000—57	22 ft.	57	277 883 833 833	101 106 112 118 125 131 137 143 150
}:	20 ft.	88	24 87 94	105 110 1117 123 130 137 144 150
uare ir	18 ft.	62 67	77 89 88 88 88 88 88 88 88 88 88 88 88 88	110 115 123 129 143 150 164
per sq	16 ft.	64	80 87 94 102	1114 128 128 135 141 149 156 171
Allowable strains per square inch	14 ft.	73	83 90 97 105	118 126 133 147 155 169 169 177
lowable	13 ft.	66 74	83 91 98 106	135 135 142 150 150 165 172 180
Al	12 ft. or less.	66 74	83 98 106	120 135 142 150 150 165 172 180
ast Ra- lius of yration, nches,	e C	3.12	3.14 3.12 3.10 3.08	20000000000000000000000000000000000000
rea of sction, sare ins.	nbs PS	$\frac{11.00}{12.25}$	13.85 15.10 16.35 17.60	19.97 21.22 22.47 24.97 26.22 27.47 28.72 29.97
eight of olumn, per ft.	o i	37.4	47.1 51.3 55.6 59.8	67.9 76.4 76.4 80.7 84.9 89.1 93.4 97.6
ickness Cover ites, ins.	10	4 4	16 16 8 16 16 2	42 72 84 42 H
o light of Channel, Ter ft.	езср	10	13	17
esigna- tion.		sə:	l 2 cover plat	8'' Channels 8'' deep and 2 Channels 8'' deep and 2 channels 8'' deep and

S

SAFE LOADS FOR PASSAIC STEEL (

 $\mathbf{B} = 6\frac{3}{3}''$ $\mathbf{C} = 8\frac{1}{2}''$

_							_				`								
		40 ft.	<u> </u>	3 3	29	7.1	79	84	88	33	97	101	105	110	114	119	123	128	132
	so radii and under. over so radii.	36 ft.	56	69	75	55	68	94	66	104	109	113	119	124	129	134	139	144	149
	50 radii ar over 50 ra	32 ft.	62	26	38	82	98	104	109	116	121	126	133	138	143	149	155	160	167
	igths of 50 lengths o	30 ft.	65	7 62	98	16	103	110	115	121	127	132	139	145	151	157	163	169	175
	for ler $\frac{l}{r}$ for	28 ft.	67	# 83	6	95	107	115	120	127	133	139	146	152	158	164	171	177	184
	12,000 lbs.	26 ft.	7.0	98	94	<u>6</u>	112	120	126	133	139	145	153	159	165	172	179	185	192
	~~~	24 ft.	£8	8 6	86	103	117	125	131	139	145	151	160	166	173	179	187	193	201
) ;	Allowable strains per square inch	22 ft.	9.6	3 8	101	107	121	130	137	145	151	158	166	173	180	187	195	201	506
	ns per s	20 ft.	79	6	105	1111	126	135	142	150	157	164	173	180	187	194	203	210	218
	le strai	18 ft.	888	100	108	115	131	140	148	156	163	171	180	187	195	202	211	818	227
	Allowab	16 ft.	88 8	104	112	120	136	146	153	161	168	177	186	194	202	500	218	227	233
	7	i 14 ft. or less.	85 75 84	106	114	122	140	149	157	165	173	185	190	198	908	215	224	231	530
	sst Ra- to sui at'n, ins.	P	3.40	3.43	3.41	3.41	3.33	3.32	3.31	3.30	3.30	3.29	3.29	3.28	3.28	3.27	3.27	3.27	3.97
	rea of sction, are ins.	S	14.48 15.85			20.40	23.37		26.12			30.25	31.62	33.00	34.37	35.	37.12		39.87
	ight of Jumn, per ft.	CC	49.2		64.7	69.4	79.5		88.8	93.5	98.5	102.9	107.5	112.2	116.9	121.6	126.2	130.9	135.5
	ickness Cover tes, ins.	10	16 3	oc colo	77.	- -   -   32	-103	6 9	rc 20	7/2	.::\	200	<b>≥</b> - ∞	10/2	-	$1_{15}^{1}$	-1×	173	14
	Sight of Channel, per ft,	евср	13	16	"	*	21	"	"	"	"	"	"	"	"	"	"	"	"
	gnation.	Desi	.əl	oiw '	ΙI	rtes	elq nm	nlo	5. 703	[e	pu u	b s	jee CF	),,e	g S sta	ouu	рэ	ე გ	

	1 1		1	1	1		
63'' 93''	i.	40 ft. 64 68	588	99 110 110	124 129 129	3445	162 171 184 193
<b>B</b> O	so radii and under,	30 ft.	99.37	109 115 121	137 137 143 143 143	######################################	179 190 203 214
	so radii.	34 H.	90 97 104	121 126 126	137 144 150	163 168 174	187 199 213 225
J.	of 50 ras	32 ft.	46 101 108	119 126 132	143 150 157 163	175 175 185 185 185 185 185 185 185 185 185 18	196 208 222 235 235
INE	for lengths of 50 ra $\frac{L}{r}$ for lengths over	30 ft. 79 86	98 105 113	124 131 138	149 156 164	178 184 190	204 218 232 245
CHANNEI 000 LBS.,		28 H.	102 109 117	129 136 143	156 163 171 171	182 198 198 198	213 227 242 256
0,0	12,000 lbs. 15,000—57	26 ft.	106 114 121	134 141 149	162 169 178 185	19 <b>2</b> 199 207	222 236 251 266
STEEL ONS OF 2 of columns.	~~ '	24 ft. 97	110 118 126	139 147 155	891 178 188 189 189	200 200 207 215	230 245 261 277
STE TONS hs of colu	are inch	22 ft. 91 100	113 122 130	145 152 160	174 183 192 900	208 208 2215 223	239 255 271 287
AIC In '	per squ	20 ft. 94 103	117 126 135	150 157 166	180 189 199 709	215 223 231	247 264 280 297
PASSAIC E ENDS, IN unsupported lengt	strains per square inch	97 106	121 130 139	155 163 172	187 196 206 914	222 232 233 233	256 273 290 308
PARE H	e  -	100 100 100	135 143 143	160 169 178	193 202 212 991	230 238 247	265 283 301 318
FOR PASSAIC STEE SQUARE ENDS, IN TONS OF the following unsupported lengths of columns	All Is ft.	100 109	135 143	160 169 178	196 205 214 993	232 240 250	268 286 304 322
	east Ra- dius of yration, inches.	0.00 0.00 0.00	3.69 3.68 3.68	3.60 3.60 3.60	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		3.52 3.52 3.51 3.51
LOADS LUMNS, For	Area of Section, quare ins.	S 2.3	8.83 8.33 8.39 8.39	26.7 28.2 29.7	32.6 34.1 35.6	38.6 40.1 41.6	44.6 47.6 50.6 53.6
SAFE	Veight of Column, se. per ft.	9 =	75.8 75.8 86.9	90.8 95.9 101.0	110.9 116.0 121.1	131.3 136.4 141.5	151.7 161.9 172.1 182.3
$\infty$	hickness of Cover ates, ins.	0 6	2 42 000 000 000 000 000 000 000 000 000	a¦a  - a	rd∞ & &+   — — — — — — — — — — — — — — — — — — —	1 87 16 1 155 1	11 14 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15
m Ĉ	Veight of each Shannel, s. per ft.	o   ₩ ≤	03	25 = =	30	: : : :	: : : :
4 All. A	esigna- tion.	je.			) lənnad. o 2 bas qə		2 срапп

SAFE LOADS FOR PASSAIC STEEL CHANNEL	COLUMNS, Square Ends, in tons of 2000 lbs.,

For the following unsupported lengths of columns.

 $=8\frac{3}{8}$ "  $=11\frac{1}{8}$ "

0

### SAFE LOADS FOR PASSAIC STEEL CHANNEL COLUMNS, Tons of 2000 LBS., SQUARE ENDS, IN

103" 144"

II II

**8** 0

For the following unsupported lengths of columns.

Column;

Channel

,,gT



## OLUMNS, SQUARE ENDS, HEAVY SECTION, IN TONS OF 2000 LBS., SAFE LOADS FOR PASSAIC STEEL CHANNEL

For the following unsupported lengths of columns.

 $\mathbf{B} = 6\frac{3}{4}''$  $\mathbf{C} = 9\frac{3}{8}''$ 

 															_	
	40 ft.	162	168	172	178	184	194	908	217	227	538	248	258	569	580	291
under.	36 ft.	183	189	194	500	202	218	231	243	255	267	278	583	301	314	326
12,000 lbs. for lengths of 50 radii and under. 15,000—57 $\frac{1}{r}$ for lengths over 50 radii.	34 ft.	193	200	302	211	218	231	244	257	698	281	293	305	318	331	343
of 50 ra hs over	32 ft.	503	210	216	222	530	243	257	270	283	295	308	320	334	348	361
r lengths of for lengths	30 ft.	214	221	227	233	241	255	698	283	202	310	355	336	350	365	378
bs. for $-57 \frac{l}{r}$ for	28 ft.	224	231	238	244	253	267	282	968	311	324	337	352	366	385	396
12,000 lbs. 15,000—57	26 ft.	234	242	249	255	564	279	295	309	325	338	352	367	385	398	413
~;~	24 ft.	245	252	360	566	276	291	307	355	333	353	367	383	398	415	431
square	22 ft.	255	563	271	277	287	305	320	335	353	367	385	398	414	431	448
ins per	20 ft.	265	273	385	588	599	317	333	348	367	381	397	414	430	448	466
Allowable strains per square inch	18 ft.	275	284	293	300	310	329	345	361	381	396	412	429	446	465	484
Allowa	16 ft.	586	295	304	312	322	340	358	375	393	410	427	445	463	481	200
	r4 ft. or less.	295	304	313	321	331	349	367	385	403	421	439	457	475	493	511
st Radius Jyration, nches.	10.	3.26	3.27	3:27	3.28	3.28	3.29	3.30	3.31	3.31	3.32	3.33	3.33	3.34	3.34	3.35
rrea of ection, uare ins.	S	49.1	50.6	52.1	53.6	55.1	58.1	61.1	64.1	67.1	70.1	73.1	76.1	79.1	82.1	85.1
eight of Jolumn, s. per ft.	)	167.0	172.1	177.2		187.4	197.6	807.8	218.0		238.4	248.6	258.8	269.0	279.2	289.4
ckness of er Plates, nches.	Cov	63/-	eski F	2/2	0	1	~i>	7	+ 00   x	1		<u>—</u>	*~\x	ેલ્સ	23.	\$ 18°
.noitsngi	Dea	s:	ate	Įď.	ver	es co.	7 '	'sq	108	;  imes	(11)	I(	alət	IUE	ср	7 70I



### COLUMNS, SQUARE ENDS, HEAVY SECTION, IN TONS OF 2000 LBS., C=114" SAFE LOADS FOR PASSAIC STEEL CHANNEL

 							_									
	50 ft.	186	191	199	204	210	222	233	244	256	898	580	291	305	314	325
under. ii.	46 ft.	506	212	550	526	232	245	258	270	283	596	309	321	334	347	359
12,000 lbs. for lengths of 50 radii and under 15,000 – 57 $\frac{l}{r}$ for lengths over 50 radii.	42 ft.	973	233	241	248	254	898	283	596	310	324	339	352	366	380	393
ths of 50 rad lengths over	38 ft.	246	254	362	270	922	292	308	322	337	352	369	385	398	413	427
engths of	34 ft.	998	275	283	292	298	316	333	348	364	380	398	413	430	446	461
os. for le $\frac{l}{r}$	30 ft.	988	596	303	313	320	339	358	374	391	408	428	443	462	479	495
12,000 lb	28 ft.	968	306	313	324	335	352	370	387	405	422	443	458	478	496	513
~:~	26 ft.	306	316	324	335	344	364	385	400	418	436	457	474	494	512	530
square inch	24 ft.	316	326	334	346	355	375	395	413	432	450	472	489	510	529	547
	22 ft.	326	336	345	357	366	387	407	426	445	464	487	504	526	545	565
le strair	20 ft.	336	346	356	367	377	398	419	439	459	478	501	520	541	561	581
Allowable strains per	18 ft.	346	357	368	378	388	409	431	452	473	493	515	536	556	577	208
7	r6 ft. or less.	349	359	370	383	391	411	433	454	476	496	27.	538	560	580	209
st Radius, yration, nches.	ું ૧૦	3.99	3.00	4.00	4.00	4.00	4.00	4.01	4.01	4.01	4.02	4.02	4.02	4.02	4.02	4.05
-sar. ins.		58.1	50.0	9.59	63.4	65.1	686	75. 1	75.6	7.0	9	86.1	9.68	93.1	9.96	100.1
ight of numn, per ft.	$\circ$	197.6		909.4	915.4	991.3	933 3	945.1	957.0	969.0	280.8	292.7	304.7	316.5	328.4	340.4
kness of Plates,	Cove	60 -	*	91 2	xo His	91		x	4 60	∝ <u>-</u> ]°	2.12	× ∞/-	# <u>2</u>	ŝ	23	100 m
gnation.	Desi		ate	Įď.	Ver	co	2 ,	·sq	19	м 5 « 3 м	< 11	15	slə	uu	гүс	12"



## JUMNS, SQUARE ENDS, HEAVY SECTION, IN TONS OF 2000 LBS., SAFE LOADS FOR PASSAIC STEEL CHANNEL

 $14\frac{1}{4}$  $\mathbf{B} = 10\frac{7}{8}$ "

II O

													_			_	
•		52ft.	301	300	318	326	334	351	367	384	400	416	433	449	466	485	499
	under.	48ft.	322	330	333	348	357	375	392	410	428	445	463	481	498	516	534
	ıdii and ı So radii.	44ft.	342	352	361	371	380	300	418	437	455	474	493	512	531	550	268
	of 50 ra	4oft.	363	373	383	393	403	423	443	463	483	503	523	543	563	583	603
	r lengths of 50 ra for lengths over	36ft.	383	394	405	415	426	447	468	490	511	535	553	575	596	617	638
	\$10018	34ft.	394	405	416	427	438	459	481	503	525	547	268	590	612	634	929
ıns.	12,000 lbs.	32ft.	404	415	426	438	449	471	494	516	539	201	583	909	628	651	673
of colum	) nch:	3oft.	414	426	437	449	460	484	206	529	552	575	598	621	644	667	069
engths o	Allowable strains per square inch	28ft.	425	436	448	460	472	496	519	543	266	590	614	637	661	684	208
oorted le	ns per	26ft.	435	447	459	471	483	508	532	556	580	604	639	653	677	701	725
Idnsun	ble strai	24ft.	445	458	470	485	495	520	544	569	594	619	644	899	693	218	743
llowing	Allowa	22ft.	455	468	481	494	206	532	557	583	809	633	658	684	700	735	200
For the following unsupported lengths of columns.		20 ft. or less.	455	468	481	494	206	535	557	583	809	634	629	685	710	736	192
FC	st Radius Gyration, nches.	ìo	5.03	5.03	5.05	5.05	5.05	5.01	5.01	5.00	5.00	5.00	4.99	4.99	4.99	4.98	4.98
	Area of section, tre inches.	3	75.9	78.0	80.2	85.3	84.4	88.7		97.2	101.4	105.7	109.9	114.2	118.4	122.7	126.9
	eight of column, s. per ft.	ο"	258.1	265.3	272.5	8.622	287.0	301.4	315 9				373.7	388.1	405.6	417.0	431.5
	ckness of er Plates, nches.	Cov	62/-4	200	<b>~</b>  ∞	150		<b>~</b>	4	<del>-</del> 1	77	— rcl∞	<del></del>	~~	જ	~  ∞  -	$2\frac{1}{4}$
0	.noitengi	Des	's	m. ate ''. §''	lq :	ιəλ	co	ซ "	sq	09	$\times$	119	er:	elsi	ıut	ср	5 ,21

# SAFE LOADS FOR PASSAIC STEEL Z BAR COLUMNS,

Square Ends, in tons of 2000 lbs., for the following unsupported lengths of columns.

							_	_								_		
	.,	24 ft.	68	38	43	55	22	99	30 ft.	38	49	09	64	26	<u>%</u>	90	102	115
	d under adii.	22 ft.	33	<u>3</u>	48	57	63	73	28 ft.	41	53	65	ස	88	94	97	110	123
	radii an ver 50 r	20 ft.	36	47	53	63	20	8	26 ft.	44	57	69	74	84	100	104	117	131
	engths of 50 radii and un for lengths over 50 radii	18 ft.	39	51	57	69	35	98	24 ft.	47	09	74	08	63	107	111	125	140
	for lengths of 50 radii and under $\frac{1}{t}$ for lengths over 50 radii.	16 ft.	43	55	65	74	83	33	22 ft.	20	64	28	8	66	113	119	132	148
0	lbs. — 5	14 ft.	46	59	29	8	68	100	20 ft.	53	89	88	06	105	120	126	140	156
	\$ 12,000 \$ 15,000	13 ft.	48	19	69	88	91	103	18 ft.	56	25	88	95	111	126	133	147	164
11	e inch:	12 ft.	20	64	23	8	94	107	16 ft.	59	92	36	100	117	133	140	155	172
0	r squar	11 ft.	52	99	74	80	97	110	14 ft.	63	79	97	106	122	139	148	162	181
	Allowable strains per	ro ft.	53	89	22	16	100	115	13 ft.	64	8	66	108	125	142	151	166	185
	vable st	9 ft.	55	20	73	94	104	118	12 ft.	99	83	101	111	128	146	155	171	189
	Allor	8 ft. or less.	56	7	83	97	107	121	II ft.	67	88	103	114	131	149	158	174	191
	st Radius Jyration, nches.	) ło	1.86	1.91	1.87	1.93	1.89	1.94		2.47	2.55	2.57	2.49	2.54	2.59	2.52	2.57	2.63
	sa of Sec-		9.4	11.8	13.8	16.1	17.8	20.1		11.3	14.2	17.1	19.0	91.9	24.8	26.3	29.0	31.9
	ght of Col- n, lbs. per foot.		31.9	40.1	46.6	54.7	60.5	68.3		38.4	48.2	58.1	64.5	74.4	83.9	89.4	98.6	108.3
in box	kness of Z and Web	Bars	-14	rej.	sol x	7	_; -	, 16 16		7	٠ ا	esi×	7	-√>	وآج	relx	79	cx/4-
	ction of			[ə]	M	I	р <b>и</b>	e ZV		рі	91, 1 1, 1	də	əje	epi J√	q	gr:	Λ ; q ;	I Zħ
	.noitsngi	Des	uu	ını	00	gi.	q 2				·II	uı	าโด	ο.	ıec	1 2	21.	8

### Z BAR COLUMN DIMENSIONS,

in inches.



 $6^{\prime\prime}$  Columns; 4 **Z** bars,  $3^{\prime\prime}$ – $3\frac{1}{16}^{\prime\prime}$  deep, 1 Web plate  $6^{\prime\prime}$  × thickness of **Z** bars.

or rivet,	Thickness of Metal.	A	В	С	D	E	F	G	н	К
Diameter of bolt or rivet, $\frac{3}{4}$	14 5 16 3 x 7 16 12 2 16	$12\frac{3}{4} \\ 12\frac{1}{16} \\ 12\frac{5}{6} \\ 12\frac{1}{16} \\ 12\frac{7}{16} \\ 12\frac{7}{16} \\ 12\frac{9}{16}$	$\begin{array}{c} 3\frac{1}{8} \\ 3\frac{7}{32} \\ 3\frac{7}{32} \\ 3\frac{9}{32} \\ 3\frac{1}{4} \\ 3\frac{1}{32} \end{array}$	$\begin{array}{c} 5\frac{9}{16} \\ 5\frac{9}{16} \\ 5\frac{7}{16} \\ 5\frac{7}{16} \\ 5\frac{5}{16} \\ 5\frac{5}{16} \\ 5\frac{5}{16} \end{array}$	318 318 318 318 318 318 318	n n n n n n	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2\frac{1}{16} \\ 2\frac{3}{4} \\ 2\frac{1}{16} \\ 2\frac{3}{4} \\ 2\frac{1}{16} \\ 2\frac{3}{4} \\ 2\frac{1}{4} \\ 2\frac{3}{4} \end{array}$	9 8 8 8 8 8 8	14888888 10 00 00 00 00 00 00 00 00 00 00 00 00

8'' Columns; 4 **Z** bars,  $4''-4\frac{1}{8}''$  deep, 1 Web plate  $6\frac{1}{2}'' \times$  thickness of **Z** bars.

rivet,	Thickness of Metal.	A	В	С	D	E	F	G	н	К
Diameter of bolt or rivet,	145638765825658703+	$\begin{array}{c} 14\frac{7}{8} \\ 15 \\ 15\frac{1}{16} \\ 14\frac{1}{16} \\ 14\frac{3}{4} \\ 14\frac{7}{8} \\ 14\frac{1}{16} \\ 14\frac{1}{16} \\ 14\frac{1}{16} \end{array}$	$\begin{array}{c} 4\frac{1}{8} \\ 4\frac{7}{3}\frac{2}{2} \\ 4\frac{5}{10} \\ 4\frac{7}{3}\frac{2}{2} \\ 4\frac{5}{13}\frac{5}{2} \\ 4\frac{5}{13}\frac{5}{2} \\ 4\frac{5}{13}\frac{5}{2} \\ 4\frac{5}{13}\frac{5}{2} \\ 4\frac{13}{2} \\ 4\frac{5}{2} \end{array}$	$\begin{array}{c} 6\frac{3}{16} \\ 6\frac{3}{16} \\ 6\frac{3}{16} \\ 6\\ 6\\ 5\frac{13}{163} \\ 5\frac{1}{163} \\ 5\frac{1}{16} \\ \end{array}$	භාගත්තම්කම්කම්කම්කම්කම්කම්කම්ක අප අප අප අප අප අප අප	14-14-14-14-14-14-14-14-14-14-14-14-14-1	이 아이	$\begin{array}{c} 3\frac{1}{16} \\ 3\frac{1}{8} \\ 3\frac{3}{16} \\ 3\frac{3}{16} \\ 3\frac{3}{16} \\ 3\frac{3}{16} \\ 3\frac{1}{16} \\ 3\frac{3}{16} \\ 3\frac{3}{16} \end{array}$	945 <u>5</u> 8-2238-14-18 99999999984	414 438 412 476 458 434 478

## SAFE LOADS FOR PASSAIC STEEL Z BAR COLUMNS,

Square Ends, in tons of 2000 lbs., for the following unsupported lengths of columns.

	36 ft.	56 68 80 80 99 111 116 113 144	80 96 112 113 133 151 151 170 183
	34 ft.	60 72 85 91 105 119 123 137 152	38 ft. 84 1101 1117 1124 139 158 162 178
	32 ft.	63 76 90 97 1111 126 130 145 160	36 ft. 88 105 123 130 146 165 170 186
nd unde	30 ft.	66 81 94 102 117 117 131 138 152 169	92 109 1135 1152 1777 1194 1209
50 radii and under.	28 ft.	71 85 99 108 123 138 145 160	32 ft. 96 1114 1133 1411 159 180 185 202 218
	26 ft.	75 89 104 113 129 145 152 167 185	3º ft. 100 119 138 147 165 186 192 227
12,000 lbs, for lengths of 13,000 $- \kappa \gamma^{\frac{1}{2}}$ for lengths of	24 ft.	77 93 109 119 135 151 174 174	28 ft. 104 1153 1153 1173 1173 1193 200 218 236
	ا ئىر	81 97 114 124 142 142 158 166 183 201	26 ft. 108 1128 1149 1159 1178 200 200 226 226 245
	20 ft.	84 101 119 130 148 164 173 190 210	24 ft. 112 132 154 165 165 185 207 215 234 253
ns per square inch:	r8 ft.	88 106 124 135 172 172 181 198 218	22 ft. 116 137 160 171 191 292 242 262 262
rains pe	16 ft.	91 110 129 141 160 179 188 204 226	20 ft. 1120 1141 1165 1177 1198 220 220 230 250 250
Allowable strains per square inch:	14 ft.	95 114 134 146 166 185 195 213 234	125 125 146 170 182 204 227 237 258 258
Allo	13 ft. or less.	95 114 134 147 166 185 196 215 234	128 150 173 173 187 209 231 243 265
ast lo su tion, tes.	Radi Gyra	3.08 3.13 3.18 3.16 3.16 3.21 3.21 3.21 3.21	86.57.00.00.00.00.00.00.00.00.00.00.00.00.00
sof sof	Seci ai .ps	15.8 224.5 24.5 30.9 30.7 30.9 30.0	21.4 28.8 31.2 34.8 38.5 44.1 47.7
ht of imn, inn,	ilo)	53.7 64.7 75.8 83.3 94.2 111.2 121.8 132.6	72.7 85.2 97.8 106.2 118.5 130.9 137.8 149.9
'ejejej	JoidT sd S lo l dew loni	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************
·um		4 Z bars 5" deep and I web plate 7" wide.	4 Z bars 6" deep and I web plate 8" wide.
.noitsn	Design	10" Z bar Column.	12" Z bar Column.

### Z BAR COLUMN DIMENSIONS,

in inches.



 $10^{\prime\prime}$  Columns; 4 **Z** bars,  $5^{\prime\prime}$ – $5\frac{1}{8}^{\prime\prime}$  deep, 1 Web plate  $7^{\prime\prime}$  × thickness of **Z** bars.

.vet,	Thickness of Metal.	A	В	С	D	E	F	G	н	K
Diameter of bolt or rivet,	5 16 3 x 7 16 12 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 16\frac{11}{16} \\ 16\frac{13}{16} \\ 16\frac{13}{16} \\ 16\frac{15}{16} \\ 16\frac{1}{2} \\ 16\frac{3}{8} \\ 16\frac{3}{4} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ \end{array}$	$\begin{array}{c} 5\frac{5}{3}2\\ 5\frac{1}{4}1\frac{1}{2}\\ 5\frac{1}{3}\frac{1}{2}\\ 5\frac{1}{3}\frac{1}{2}\\ 5\frac{1}{3}\frac{7}{16}\\ 5\frac{1}{3}\frac{7}{3}\\ 5\frac{1}{3}\frac{7}{3}\\ 5\frac{1}{3}\frac{7}{3}\\ \end{array}$	$\begin{array}{c} 6_{16}^{9} \\ 6_{16}^{9} \\ 6_{16}^{9} \\ 6_{16}^{3} \\ 6_{8}^{3} \\ 6_{8}^{3} \\ 6_{16}^{3} \\ 6_{16}^{3} \\ 6_{16}^{3} \\ \end{array}$	ರು ನಾರ್ವಹಣೆಹಣೆಹಣೆಹಣೆಹ ರು ನಾರ್ವಹಣೆಹಣೆಹಣೆಹ ರು ನಾರ್ವಹಣೆಹಣೆಹ	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	$\begin{array}{c} 1_{787/87/87/87/87/87/87/87/87/87/87/87/87/$	$\begin{array}{c} 3_{4}^{1} \\ 3_{16}^{5} \\ 3_{8}^{3} \\ 3_{14}^{4} \\ 3_{16}^{5} \\ 3_{8}^{4} \\ 3_{16}^{5} \\ 3_{8}^{2} \end{array}$	$\begin{array}{c} 10\frac{3}{8} \\ 10\frac{1}{4} \\ 10\frac{1}{8} \\ 10 \\ 9\frac{3}{8} \\ 9\frac{3}{4} \\ 9\frac{5}{8} \\ 9\frac{1}{2} \\ 9\frac{3}{8} \end{array}$	51-7-16-9-16-31-12-15-31-15-15-55-55-55-55-55-55-55-55-55-55-55

12" Columns; 4 **Z** bars,  $6''-\dot{6}_8^{1"}$  deep, 1 Web plate  $8''\times$  thickness of **Z** bars.

ivet,	Thickness of Metal.	A	В	С	D	E	F	G	Н	к
Diameter of bolt or rivet, $\frac{3}{4}$	38 76 16 29 16 58 116 34 136 78	$\begin{array}{c} 19\frac{1}{16} \\ 19\frac{3}{16} \\ 19\frac{3}{16} \\ 19\frac{5}{16} \\ 18\frac{7}{8} \\ 19 \\ 19\frac{1}{8} \\ 18\frac{3}{4} \\ 18\frac{7}{8} \\ 19 \\ \end{array}$	$\begin{array}{c} 6_{\overset{3}{16}} \\ 6_{\overset{9}{32}} \\ 6_{\overset{3}{32}} \\ 6_{\overset{3}{32}} \\ 6_{\overset{3}{32}} \\ 6_{\overset{3}{32}} \\ 6_{\overset{3}{32}} \\ 6_{\overset{3}{16}} \\ 6_{\overset{1}{16}} \\ \end{array}$	$\begin{array}{ c c c c }\hline 7^{\frac{1}{4}}_{\frac{1}{4}} \\ 7^{\frac{1}{4}}_{\frac{1}{4}} \\ 7^{\frac{1}{16}}_{\frac{1}{16}} \\ 7^{\frac{1}{16}}_{\frac{1}{16}} \\ 7^{\frac{1}{16}}_{\frac{1}{8}} \\ 6^{\frac{7}{8}}_{\frac{8}{8}} \\ 6^{\frac{7}{8}}_{\frac{8}{8}} \\ \end{array}$	$\begin{array}{c} 4\frac{1}{8} \\ \end{array}$	$\begin{array}{c} 4\frac{1}{4} \\ 4\frac{1}{4} \end{array}$	2 2 2 2 2 2 2 2 2	$\begin{array}{c} 3\frac{1}{2} \\ 3\frac{1}{16} \\ 3\frac{5}{8} \\ 3\frac{1}{2} \\ 3\frac{1}{16} \\ 3\frac{5}{16} \\ 3\frac{1}{16} \\ 3\frac$	$\begin{array}{c} 11\frac{1}{2} \\ 11\frac{3}{8} \\ 11\frac{1}{4} \\ 11\frac{1}{8} \\ 11 \\ 10\frac{7}{8} \\ 10\frac{3}{4} \\ 10\frac{5}{8} \\ 10\frac{1}{2} \\ \end{array}$	630558 644 6514 634 6514 634 658 658 658 658 658 658 658 658 658 658

# SAFE LOADS FOR PASSAIC STEEL Z BAR COLUMNS,

					_																	
		40 ft.	201	202	215	223	553	237	244	251	258	40 ft.	362	270	278	285	292	500	307	314	321	327
		38 ft.	210	216	224	233	240	247	255	362	270	38 ft.	274	282	290	868	305	312	321	328	335	341
		36 ft.	219	973	234	243	250	258	566	274	281	36 ft.	588	294	303	311	318	326	334	342	349	356
	d under. ii.	34 ft.	228	235	244	253	560	898	277	285	293	34 ft.	868	306	315	324	331	333	348	356	363	370
columns	radii and 2r 50 radii.	32 ft.	237	245	253	263	270	279	288	596	304	32 ft.	310	318	328	336	344	353	361	370	377	385
ths of c	ths of 50 gths ove	30 ft.	246	254	263	273	281	583	300	307	315	30 ft.	322	331	340	349	357	366	375	384	392	399
ed leng	lbs. for lengths of 50 radii $-57\frac{L}{r}$ for lengths over 50 i	28 ft.	255	264	273	283	291	300	310	318	327	28 ft.	334	343	352	362	371	380	388	398	406	414
support	12,000 lbs. 15,000 — 57	26 ft.	264	273	282	293	301	310	321	329	338	26 ft.	346	355	365	375	384	393	405	412	420	428
ving un	$nch: \begin{cases} r^2 \\ r_5 \end{cases}$	24 ft.	273	283	292	303	311	321	331	341	350	24 ft.	358	368	377	388	397	407	416	426	434	443
ollov	square i	22 ft.	282	292	305	313	322	331	342	352	361	22 ft.	370	380	390	400	410	419	430	440	449	457
s., for th	ains per	20 ft.	291	301	311	323	335	342	352	363	372	20 ft.	381	392	405	413	423	433	443	454	463	472
2000 lbs	Allowable strains per square inch: $\begin{cases} 12,000 \text{ lbs. for lengths of 50 radii and under.} \\ 15,000 - 57 \frac{l}{r} \text{ for lengths over 50 radii.} \end{cases}$	18 ft.	300	311	321	332	342	352	362	374	384	18 ft.	393	404	415	426	436	446	457	467	477	487
tons of	Allov	or less.	306	317	327	338	348	358	368	380	389	r6 ft. or less.	401	412	422	433	444	454	465	475	486	496
Square Ends, in tons of 2000 lbs., for the following unsupported lengths of	cast dius of ration, ches.	R ₃					3.86								3.84						3.86	
quare E	rea of ction, inches.	·bs	51.0				58.0	59.		63.3			6.99	68.7	70.4	72.2	74.0	75.7	77.5	79.2	81.0	82.7
Š	ight of lumn, per ft.	o S Ibs	173.5	•			197.3	203.5	200.1					-		245.2	251.6	257.3	263.3	269.4	275.4	281.2
	ckness Cover lates.	30	co; x	7	_ _  -  3	ه و آ	ıcix	77		# C	z dix		-19	ლ <del>1</del>	- - exp	<b>≻</b>  ∞	cjo	_	$1_{16}$	x	200	14
	lo noii		6.	pi	w ,,, ≥ ₹ 1/8	₹[ .,,8 ×,	,8 st							.əp	IM \$\frac{1}{2} >	// <b>₹1</b> < // × /	, ⁸ 9	rs lat	ps p b	эл эл 2	I	3
	noiten;	Desi		·u	uı	ılo	L C	рs	Z	ηŧΙ					uu	nĮc	c	ıec	١Z	,,₹	I	_8

### Z BAR COLUMN DIMENSIONS,

in inches.



14'' Columns; 4 **Z** bars,  $6'' \times \frac{3}{4}''$ ; 1 Web plate  $8'' \times \frac{3}{4}''$ ; 2 cover plates 14'' wide.

vet,	Thickness of Cover Plates.	A	В	С	D
Diameter of bolt or rivet, $\frac{T}{8}^{II}$	38 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 19\frac{7}{16} \\ 19\frac{7}{16} \\ 19\frac{5}{8} \\ 19\frac{5}{8} \\ 19\frac{4}{15} \\ 19\frac{7}{8} \\ 20 \\ 20\frac{1}{16} \\ 20\frac{1}{8} \end{array}$	$\begin{array}{c} 6^{\frac{3}{4}} \\ 6^{\frac{1}{1}\frac{3}{6}} \\ 6^{\frac{1}{8}} \\ 6^{\frac{1}{8}} \\ 7 \\ 7 \\ 7^{\frac{1}{6}} \\ 7^{\frac{1}{8}} \\ 7^{\frac{1}{16}} \\ 7^{\frac{1}{4}} \end{array}$	12.50.50.50.50.50.50.50.50.50.50.50.50.50.	$10\frac{3}{4}$

### 14" Columns;

4 **Z** bars,  $6\frac{1}{8}$  ×  $\frac{7}{8}$ ; 1 Web plate  $8'' \times \frac{7}{8}$ ; 2 cover plates 14" wide.

et,	Thickness of Cover Plates.	A	B	С	D
Diameter of bolt or rivet, $\frac{I}{8}^{I/I}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 20\frac{1}{8} \\ 20\frac{1}{4} \\ 20\frac{5}{16} \\ 20\frac{5}{16} \\ 20\frac{1}{2} \\ 20\frac{1}{2} \\ 20\frac{1}{16} \\ 20\frac{1}{16} \\ 20\frac{1}{16} \\ 20\frac{1}{2} \\ 20\frac{1}{2} \\ 21 \end{array}$	$\begin{array}{c} 7^{\frac{1}{4+5}}_{1,15} \\ 7^{\frac{1}{28}}_{1,15} \\ 7^{\frac{1}{28}}_{1,15} \\ 7^{\frac{1}{29}}_{1,15} \\ 7^{\frac{1}{29}}_{1,15} \\ 7^{\frac{1}{29}}_{1,15} \\ 7^{\frac{1}{29}}_{1,15} \\ 7^{\frac{1}{29}}_{1,15} \\ 7^{\frac{1}{29}}_{1,15} \end{array}$	14 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	$\begin{array}{c} 10\frac{1}{2} \\ \end{array}$

# SAFE LOADS FOR PASSAIC STEEL Z BAR COLUMNS,

Square ends, in tons of 2000 lbs., for the following unsupported lengths of columns.

-		44 ft.	2553 448 253 453 453 453	378	387 396	404	421 430	438 447	456 464 472 481	489 497 506 514
	under. ii.	42 ft.	35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00	391	401 410	418 426	436	453 463	472 480 488 498	506 514 524 532
	so radii and under. s over so radii.	40 ft.	368 378 387 396	404	414 424	482	450 460	469 478	488 496 505 514	523 532 541 550
	gths of 50 rad lengths over	38 ft.	380 390 400 409	418	437 437	4+6 455	465 475	484 494	504 512 521 531	549 549 559 568
e line	for lengths of $\frac{l}{r}$ for lengths	36 ft.	395 2014 2019 2019	431	423	460 470	480 490	500	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	557 567 576 586
T COIGI	for len $\frac{l}{r}$ for	34 ft.	404 415 415 415 415 415 415 415 415 415 41	444	255 255	475 484	494 505	515 525	536 544 554 565	574 584 594 604
Singing	12,000 lbs. 15,000—57	32 ft.	416 438 4488 4488	457	479	489 498	509 519	530 540	552 561 570 581	591 601 612 622
or real re	~:~	30 ft.	428 439 450 461	470	493	513	524 534	546 556	568 577 587 598	608 619 629 640
ddneun	aare inc	28 ft.	440 450 463 474	484	495 506	527	539 549	561 571	584 593 603 615	625 636 647 658
Smiwo	Allowable strains per square inch	26 ft.	452 463 475 487	497	500	545 542	553 564	587	600 610 631 631	642 654 664 676
רווב זמו	strains	24 ft.	464 475 488 500	510	555	549 556	568 579	592 602	616 626 637 648	659 671 682 694
105., 101	owable	22 ft.	476 488 501 513	523	536	559 571	583 594	607 618	6543 6643 666	676 689 701 713
01 2000	All	20 ft. or less.	488 501 513 525	537	548 561	523	597 609	633	<del>25</del> 268 <del>25</del> 28 <del>25</del> 28	693 705 717 729
siio iii t	t Radius yration, ches.	5 10	609.44 009.44 009.44	4.60	4.60	4.60 60 60	4.60	4.61	44.44. 19.19. 19.19.	4.61 4.61 4.61 4.61
oquare citus, in tons of 2000 10s., for the following unsupported rengins of continues	rea of ction, inches.	·bs •S	83.43 85.43 85.43 85.43	89.43	93.43	95.43	99.43	103.43 105.43	107.43 109.43 1111.43 113.43	115.43 117.43 119.43 121.43
hc	ight of lumn, per ft.	၀၂ ျ	276.8 290.4 290.4	304.1	310.8	331.2	338.0 344.9	358.4	365.2 372.0 372.0 385.7	392.5 399.2 406.1 412.8
	ckness Cover ins	30	T T T T	14	re in the second	- India	- FIE	1 2 2 2 2 4	2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	C1 C1 C1 C1
	Section of Column.				·əpi	(,, <u>%</u> )	6'' >: 6 10'	bars plat plat	y Z tove	
	noitsag	Desi								

### Z BAR COLUMN DIMENSIONS,

IN INCHES.



16" Columns; 4 **Z** bars  $6\frac{1}{8}$ "  $\times \frac{7}{8}$ " 1 web plate 10"  $\times \frac{7}{8}$ " 2 cover plates 16" wide.

	Thickness of Cover Plates.	A	В	С	D
r Rivet,	$egin{array}{c} 1 & 1_{rac{1}{16}} & 1_{rac{1}{18}} & 1_{rac{1}{18}} & 1_{rac{1}{16}} & 1_{rac{1}{16}} & 1_{rac{1}{38}} & 1_{rac{$	$\begin{array}{c} 22 \\ 22\frac{1}{8} \\ 22\frac{3}{16} \\ 22\frac{1}{4} \\ 22\frac{3}{8} \\ 22\frac{7}{16} \\ 22\frac{9}{16} \end{array}$	$7_{\frac{1}{1}0}^{9}$ $7_{\frac{1}{8}8}^{6}$ $7_{\frac{1}{1}0}^{1}$ $7_{\frac{3}{4}4}^{3}$ $7_{\frac{1}{1}0}^{7}$ $7_{\frac{1}{1}0}^{1}$	1949 1949 1949 1949 1949 194	$12\frac{1}{2}$ $12\frac{1}{2}$ $12\frac{1}{2}$ $12\frac{1}{2}$ $12\frac{1}{2}$ $12\frac{1}{2}$ $12\frac{1}{2}$
Diameter of Bolt or Rivet, $\frac{7}{8}''$	$egin{array}{c} 1_{1}^{7}_{6} \\ 1_{2}^{1} \\ 1_{1}^{9}_{6} \\ 1_{1}^{5}_{8} \\ 1_{1}^{1}_{1}_{6} \\ 1_{3}^{4} \\ 1_{16}^{1} \end{array}$	$\begin{array}{c} 22\frac{5}{8} \\ 22\frac{1}{16} \\ 22\frac{1}{18} \\ 22\frac{7}{8} \\ 23\frac{7}{16} \\ 23\frac{1}{16} \\ 23\frac{1}{16} \\ 23\frac{1}{8} \end{array}$	8 16 8 3 6 8 6 7 6 8 8 7 6 8 8 7 6 8 8 7 6 8 7 6 8 7 6 7 8 7 6 8 7 6 7 6	134 144 144 144 144 144 144 144 144	$\begin{array}{c} 12\frac{1}{2} \\ 12\frac{1}{2} \end{array}$
	$egin{array}{c} 1^{7}_{8} \ 1^{1}_{16} \ 2 \ 2^{1}_{16} \ 2^{1}_{8} \ 2^{1}_{16} \ 2^{1}_{4} \ \end{array}$	$\begin{array}{c} 23\frac{1}{4} \\ 23\frac{5}{16} \\ 23\frac{7}{10} \\ 23\frac{1}{2} \\ 23\frac{5}{16} \\ 23\frac{1}{16} \\ 23\frac{1}{16} \end{array}$	$\begin{array}{c} 8_{16}^{7} \\ 8_{2}^{9} \\ 8_{16}^{16} \\ 8_{2}^{16} \\ 8_{16}^{16} \\ 8_{34}^{24} \\ 8_{1}^{16} \end{array}$	$egin{array}{c} 1_{rac{3}{4}} & & & & & & & & & & & & & & & & & & $	$egin{array}{c} 12rac{1}{2} \ \end{array}$

### SAFE LOADS, IN TONS OF 2000 LBS., FOR HOLLOW CYLINDRICAL CAST IRON COLUMNS.

Square ends.

Factor of safety of 3.

Outside diam., inches.	Length of column, in feet.    Construction   Column   Col											Wgt. per ft. of Cols., lbs.	
Outsid	Thick metal,	8	10	12	14	16	18	20	22	24	Area of Section, sq. ins.	Wgt. F	
66 77 88 88 99 99 10 10 10 11 11 11 11 12 12 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15	$\begin{array}{c} 3^{\frac{1}{4}} & 1 & 3^{\frac{1}{4}} & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$	47 60 60 76 72 93 112 85 110 133 155 127 154 180 203 144 175 204 232 258 160 196 229 261 291 177 216 254 289 324 193 237 278 318 318 318 318 318 318 318 318 318 31	41 52 54 69 67 86 104 80 125 145 120 121 120 121 137 167 195 221 246 154 188 220 225 1279 170 209 245 280 312 250 229 270 308 348 348 320 425 204 225 204 225 206 225 226 227 227 228 229 229 229 229 229 229 229 229 229	36 46 48 62 61 78 94 74 95 115 134 112 136 159 158 209 233 147 180 210 223 239 266 163 200 235 268 300 217 297 333 3197 242	31 40 43 55 55 71 86 68 88 106 123 105 127 148 168 122 148 173 170 199 226 252 156 191 224 256 276 276 276 276 276 276 276 276 276 27	27 35 38 49 50 64 77 62 80 97 118 137 155 114 139 161 184 205 131 160 187 213 238 148 181 213 243 272 165 203 239 273 305 183 224	24 30 34 43 55 58 69 57 73 89 109 127 143 106 129 151 172 191 123 150 176 201 224 140 172 201 229 257 193 227 260 291 214	21 26 30 38 40 52 62 52 67 81 194 82 100 117 132 143 162 181 115 141 165 188 210 217 242 149 183 215 246 246 257 267 267 267 267 267 267 267 26	27 34 36 47 56 61 73 85 76 92 107 121 130 148 132 154 176 195 124 179 204 228 141 173 204 233 261 159 195 209 229	24 30 33 42 51 43 55 67 78 69 84 98 111 127 152 101 123 144 164 183 117 143 168 192 214 164 113 121 114 115 116 116 116 116 117 117 118 119 119 119 119 119 119 119 119 119	12.4 15.7 14.7 14.7 17.1 22.0 26.5 19.4 35.3 28.3 34.4 40.1 31.4 35.3 44.8 50.6 42.2 49.5 56.4 62.8 37.7 46.1 54.2 61.9 69.1 40.1 50.4 40.1 50.1 50.1 50.1 60.1 60.1 60.1 60.1 60.1 60.1 60.1 6	39 49 46 60 53 69 83 61 78 95 110 88 107 125 142 98 119 140 159 176 198 131 154 176 196 118 144 169 193 216 128 156 128 156 128 157 168 199	
15 15 15 16 16	$\begin{bmatrix} 1_{\frac{1}{2}} \\ 1_{\frac{3}{4}} \\ 2 \\ 1_{\frac{1}{4}} \\ 1_{\frac{3}{4}} \\ \end{bmatrix}$	303 347 389 277 327	295   337   378   270   319	285 327 366 262 311	275 315 353 254 300	264 302 339 245 290	253 289 324 235 278	241 276 309 225 267	263 294 216 255	249 280 206 244	72.9 81.7 57.8 68.4	227 255 180 214	
16 16 16	$egin{array}{c} 1rac{3}{4} \ 2 \ 2rac{1}{4} \end{array}$	375 421 465	366 411 454	356 400 441	344 387 427	332 373 412	319 358 396	306 343 379	292 328 363	279 313 346	78.4 88.0 97.2	245 275 304	

### SAFE LOADS, IN TONS OF 2000 LBS., FOR HOLLOW SQUARE CAST IRON COLUMNS.

Square ends.

Factor of safety of 8.

o e	ness		Length of column, in feet.									Wgt. per ft. of Cols., Ibs.
Side of Column, Ins.	Thickness of metal, inches	8	10	12	14	16	18	20	22	24	Area of Section, sq. ins.	Wgt. p
6 6 6 7 7 8 8 8 9 9 9 10 10 10 11 11 11 11 12 12 12 12 13 13 13 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64 81 80 102 96 1123 149 112 203 206 201 235 266 302 235 227 226 336 227 227 227 227 228 338 377 228 377 419 249 305 411 460 270 331 490 406 270 331 490 406 407 407 407 407 407 407 407 407 407 407	57 73 73 94 90 116 139 106 137 168 129 225 254 219 225 221 221 246 228 328 328 328 328 328 328 328 328 328	51 65 67 86 83 107 129 100 129 156 182 151 183 214 242 2210 246 279 310 246 352 227 237 278 316 352 225 399 353 394 437 258 437 258 437 437 437 437 437 437 437 437 437 437	45 58 61 78 77 79 99 119 93 121 146 170 222 228 266 295 186 295 227 266 303 338 208 229 221 380 229 331 330 338 423 254 423 256 441 366 441	40 51 55 70 71 110 87 112 136 134 163 189 215 156 156 190 222 252 289 323 199 244 286 327 365 221 271 271 271 271 271 271 271	36 45 50 63 83 100 80 104 126 125 177 201 147 179 209 238 264 262 275 307 191 233 274 313 350 213 351 393 235 288 339 388	32 40 45 57 59 76 92 74 96 116 1135 117 142 249 160 229 261 291 182 223 226 229 233 24 204 336 376 229 229 237 247 27 27 27 27 27 27 27 27 27 27 27 27 27	54 69 84 69 89 107 125 132 154 175 130 158 185 210 234 151 175 173 217 247 247 2249 284 317 195 239 229 239 2217 260 217 260 27 27 27 27 27 27 27 27 27 27 27 27 27	49 63 76 63 82 99 91 115 101 123 143 162 122 122 122 233 260 164 236 270 301 186 228 238 307 344 208 253 301 345 301 345 301 345 301 301 301 301 301 301 301 301 301 301	15.8 20.0 18.8 24.0 21.8 28.0 33.8 24.8 32.0 38.8 45.0 43.8 51.0 57.0 64.8 72.0 44.8 57.0 64.8 72.0 48.0 57.8 80.0 71.8 80.0 58.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69	49 63 59 75 68 88 106 77 100 121 141 113 137 159 181 125 152 178 202 225 138 168 197 224 250 150 184 216 246 275 163 199 234 268 300 175 215 225 238 249 258 268 300 175 268 275 275 275 275 275 275 275 275 275 275
15 16 16 16 16 16	$\begin{bmatrix} 1_{\frac{1}{4}} \\ 2 \\ 1_{\frac{1}{4}} \\ 1_{\frac{1}{2}} \\ 2_{\frac{1}{4}} \end{bmatrix}$	501 357 421 482 541 598	490 350 413 474 532 588	479 343 404 463 520 575	465 334 394 452 507 561	451 325 383 440 493 545	308 436 315 372 426 478 529	420 305 359 412 463 511	303 403 294 347 397 446 493	386 286 334 383 429 475	104.0 73.8 87.0 99.8 112.0 123.8	325 231 272 312 350 387

### ULTIMATE STRENGTH OF HOLLOW CYLINDRICAL AND RECTANGULAR CAST IRON COLUMNS.

Ultimate Strength in Pounds per Square Inch: CYLINDRICAL COLUMNS. RECTANGULAR COLUMNS.

и.						
ı	Square Bearing:	Pin and Square:	Pin Bearing:	Square Bearing:	Pin and Square:	Pin Bearing:
	80000	80000	80000	80000	80000	80000
	$1+\frac{(12L)^2}{800\ d^2}$	$1 + \frac{3(12L)^2}{1600 \ d^2}$	$1 + \frac{(12L)^2}{400 d^2}$	$1+\frac{3(12L)^2}{3200\ d^2}$	$1 + \frac{9(12L)^2}{6400\ d^2}$	$1 + \frac{3(12L)^2}{1600 \ d^2}$

L= Length of Column, in feet. d= External diameter or least side of rectangle, in inches.

		RICAL CO		RECTAN		
$\frac{L}{d}$	Ultimate S	trengthinlb	s. persq.in.	UltimateS	trength in lb	s. persq.in.
d	Square	Pin and	Pin	Square	Pin and	Pin
	Bearing.	Square.	Bearing.	Bearing.	Square.	Bearing.
0.5	76560	74940	73390	77380	76150	74940
0.6	75130	72910	70820	76290	74560	72910
0.7	73520	70650	68000	75030	72780	70650
0.8	71740	68210	65020	73640	70820	68210
0.9	69820	65640	61940	72110	68730	65640
1.0	67800	62990	58820	70480	66520	62990
1.1	65690	60300	55730	68790	64260	60300
1.2	63530	57600	52690	67000	61940	57600
1.3	61340	54930	49740	65140	59600	54960
1.4	59140	52310	46900	63260	57270	52320
1.5	56940	49770	44200	61350	54960	49760
1.6	54760	47300	41630	59450	52680	47300
1.7	52620	44940	39210	57550	50460	44960
1.8	50530	42670	36930	55670	48300	42670
1.9	48490	40510	34790	53800	46230	40510
2.0	46510	38460	32790	51940	44200	38460
2.1	44600	36520	30920	50160	42260	36520
2.2	42750	34680	29180	48400	40400	34680
2.3	40980	32940	27540	46670	38630	32950
2.4	39280	31310	26030	44990	36930	31310
2.5	37650	29770	24620	43390	35310	29760
2.6	36090	28320	23300	41820	33770	28320
2.7	34600	26950	22070	40320	32310	26950
2.8	33180	25670	20930	38870	30920	25670
2.9	31820	24460	19860	37470	29600	24460

For safe quiescent loads, as in buildings, divide the above values by 8.

### FOUNDATIONS.

The proper design of foundations is of the utmost importance. The maximum load carried by the foundation must first be obtained. The loads to be considered in buildings are of two kinds: the dead load, which is the actual weight of the materials of construction; and the live load, which is the weight that the floors may be required to support. The live load is variable. In office buildings, parts of the floors may be loaded to their full capacity, but the probability of the entire structure being so loaded is remote; while in breweries, storage warehouses and buildings for similar purposes, all the floors may be fully loaded. The maximum of both dead and live loads must be considered, and the area of the footing of the foundation must be such that the greatest pressure on different soils does not exceed the following:

Kind of material.	Safe pressure		
	in tons per sq. ft.		
Compact bed rock, if of granite	30		
" " " limestone	25		
" " sandstone			
Soft friable rock			
Clay in thick heds absolutely dry			
"" " moderately dry2			
Soft clay			
Dry coarse gravel, well packed and confined6			
Compact dry sand, well cemented and confined4			
Clean dry sand, in natural beds and confined2			
Good solid dry natural earth4			

Except where foundations are upon rock, the possibility of the bearing material being loosened, by water or by adjacent building operations, must be considered and proper precautions must

be taken to prevent it.

Foundations upon yielding material will always settle more or In order that this settlement shall be uniform, it is essential that the various foundations in a structure shall produce equal pressures per unit of area on their footings; that is, the areas of the foundations must be proportional to the loads carried. In office buildings, where the actual live load is variable and rarely approaches the load assumed, the best results in the way of equal settlement of the foundations are obtained by proportioning the areas of the footings so that the dead loads produce equal pressures. Thus, if in such a building the maximum foundation supports a dead load of 200 tons and a live load of 200 tons, and another foundation a dead load of 150 tons and a live load of 100 tons, the total load on the first foundation is 400 tons and, assuming the soil to carry a load of 4 tons per sq. ft., the area required is 100 sq. ft. This corresponds with a pressure of 2 tons per sq. ft. for the dead load alone. Using this same pressure for dead load requires an area of 75 sq. ft. for the second foundation, instead of an area of 62.5 sq. ft. which would have been obtained had the foundation been proportioned for the total live and dead load at 4 tons per sq. ft.

The foundation illustrated in Fig. 1 is frequently used when the soil is good dry natural earth capable of safely supporting

from 3 to 4 tons per square foot. Such a foundation must be designed to distribute the concentrated load which it supports over the proper area of footing required. The capstone should be of granite or limestone having a minimum thickness of one foot, and not less than one-fifth its greatest dimension. The body of the pier should be of first quality brick laid in Portland cement mortar, and the footing of a layer of concrete not less than 18" thick. When the load is great, a heavy cast iron pedestal should be used to distribute the load over the cap-The height of this



pedestal should be one-half the greatest dimension of its hase. The requisite spread of footing is obtained by offsets in the successive courses, and the proper design of the foundation is based

upon the following values:

S	Maximum pres- sure, lbs. per sq. in.	Maximum offset of course in terms of thickness.
Granite Limestone Sandstone Brickwork in Portland of	300 250 ement .200	5.00 112 2.00 2.00 2.00 2.00 2.00 2.00 2.

To illustrate the application of these principles they will be applied to the design of a foundation for a load of 400 tons on a soil capable of supporting a load of 4 tons per square foot. The size of the cast iron base will be determined by limiting its pressure on the granite cap to 350 lbs. per square inch; then,

400 tons = 800,000 lbs.  $\div$  350 = 2286 sq. ins. required.

A base, 48'' square, having an area of 2304 sq. ins., will be required.

The size of the granite cap will be determined by limiting its pressure on the brickwork to 200 lbs. per sq. in.; then,

 $800,000 \text{ lbs.} \div 200 = 4,000 \text{ sq. ins. required.}$ 

A capstone, 5' 4" square, has an area of 4096 sq. ins., and is the size required. Its thickness will be 15", or about one-fourth its base. The area of the footing required is,

400 tons  $\div$  4 = 100 sq. ft. required.

The footing will be of concrete, 10 ft. square, and 18" thick. The projection of this footing will be one-half its thickness, or 9", all around; so that the brickwork must be 8' 6" square where it rests upon the concrete. The projection of a single course of brickwork is limited to 1". Each course of brick thus adds 2" to the spread of the foundation, and to obtain the necessary spread

in the brickwork, from the under side of the capstone to the top of the concrete, requires 19 courses of brick. This foundation is illustrated in Fig. 1.

### PILE FOUNDATIONS.

Properly driven timber piles make a satisfactory and permanent foundation if they are kept submerged under water. Piles are usually driven from 2 to 3 feet between centers, the tops cut off level and capped with a timber grillage, care being observed to have all wood kept below low-water line. The maximum load on a single pile should be limited to 20 tons. Where piles are driven to bed rock, and the surrounding soil is stiff enough to supply sufficient lateral support, the bearing power of the pile is equal to the safe direct compression on its least cross section; if the surrounding soil is plastic, the bearing power of the pile is its safe load computed as a column of the total length of the pile. Where piles are driven into yielding soil without reaching rock, the safe load on the pile should not exceed the value given by the formula,

 $L = \frac{2WH}{p+1}$ 

where L is the safe load in tons on the pile; W is the weight of the hammer in tons; H is the fall of the hammer in feet; and p is the penetration of the pile, under the last blow of the hammer, in inches. The broom and splinters should be removed from the head of the pile in obtaining the penetration under the last blow.

### STEEL BEAM GRILLAGE.



Where foundations rest upon a yielding stratum, a grillage consisting of two or more layers of steel I beams furnishes an economical and satisfactory method of distributing Fig. 2 illustrates such a foundation. A bed of concrete, not less than 12 inches thick, is laid, on which the steel I beams are placed side by side, a sufficient number of proper size being used to distribute the load over the desired area. This layer of beams is covered with concrete well rammed between the beams. The second layer of beams on which the foot of the column is to rest is laid across the first layer, reaching to the extreme outer edge of the first layer, and is also filled between and covered with concrete. The beams of each layer should be connected with separators and tie rods. The beams should have a clear space of at least 3 inches between flanges to permit ramming the concrete, and should not be spaced exceeding 18 inches on centers.

When the load is great, the number of beams required in the second layer may necessitate a greater spread than can be spanned by the shoe or the foot of the column, in which case a third layer of short beams or a box girder may be used to advantage.

This type of foundation is adapted for heavy loads, as the requisite spread of foundation area is obtained in small depth. A useful application of the method is in situations where a thin and compact stratum overlies another of a more yielding nature, and where the available height of foundation is limited; as the requisite area of the footing may be obtained without penetrating the firmer stratum, and without undue vertical encroachment.

The method of calculating the strength of grillage beams is as

follows: -

Let W = Superimposed load on beam.

B = Length over which superimposed load is applied.

L = Length of beam.



The superimposed load is considered as uniformly distributed over the length on which it is applied, and the pressure of the soil as uniformly distributed over the entire length of the beam. The maximum bending moment is at the center of the length of the beam and is equal to  $\frac{1}{8}$  W(L-B). If the load is taken in pounds, the bending moment will be found either in foot lbs. or in inch lbs., according as the lengths are taken in feet or in inches; and the size of the steel beam required can be found in the manner explained under the Strength of Beams.

To facilitate calculation, the following table gives the greatest safe loads on Passaic steel **I** beams used in grillages for various values of (L-B). In using this table, it is only necessary to assume the number of beams to be used in the layer. The superimposed load on each beam equals the total load on the layer divided by the number of beams in the layer, and by reference to the table, the proper beam capable of supporting this load is at once deter-

mined.

To illustrate the application of the table, take a foundation carrying a load of 400 tons on a soil capable of supporting a load of 2 tons per square foot. The required area of the footing will be 200 sq. ft. If a square footing is used, a square with 14-ft. sides has an area of 196 sq. ft. and will be assumed as ample.

The upper layer of beams will be proportioned first.

The base of the column will be assumed as 4 ft. square; then, in this case, B is 4 ft., L is 14 ft., and (L-B) is 10 ft. The upper layer will be assumed to consist of 5 beams, as this number is the greatest that will provide sufficient space between the flanges of the beams to permit satisfactory ramming of the concrete filling. Each beam will then take  $\frac{1}{3}$  the total load, or 80 tons. By referring to the table, a 20'  $\times$  90 lb. I has a safe load of 80.3 tons when L-B is 10 ft. The upper layer will, therefore, consist of five 20'  $\times$  90 lb. I beams,

In the under layer, in this instance, L and B have the same values as in the upper layer. If the beams are spaced about 12"

on centers, there will be 15 beams in the layer, each carrying  $\frac{1}{16}$  the total load, or 26% tons. By referring to the table, the lightest beam, whose safe load is nearest to this, is a 15"  $\times$  42 lb. **I** which has a safe load of 30.6 tons. A less number of beams can therefore be used. Thirteen beams, 15"  $\times$  42 lbs., will provide for the total load within a small amount, which considering the nature of the load, can be neglected. This foundation is illustrated in Fig. 2.

Where two columns, carrying unequal loads, rest upon the same grillage, care should be taken to have the center of gravity of the grillage coincide with the point of application of the resultant of the loads on the columns, in order to secure uniform

pressure on the footing.

Frequently three columns are supported on the same grillage, the beams being continuous. The calculation of such a foundation is involved, and the distribution of pressure uncertain. It is advisable to design such a foundation with a system of simple beams, giving a distribution of weight readily determined by the application of the simple law of the lever.

### CANTILEVER FOUNDATIONS.

Where it is not advisable to undermine existing walls on adjoining property, or where it is not possible to have the wall columns over the center of the foundations along an existing wall, cantilever girders are used to carry the wall columns adjacent to the building line. A simple type of such a foundation is illustrated in Fig 3.



The foundation is placed as near the existing wall as possible, and the wail column rests upon a girder which overhangs the foundation and is anchored to one of the interior columns. The maximum bending moment is obtained by multiplying the load on the wall column by the distance between the center of the column and the center of the supporting foundation. The size of cantilever beams can then be determined in the manner already given in the article on Strength and Deflection of Beams. Care must be observed to have the minimum load on the interior column greater than the maximum lifting tendency produced by the cantilever.

### PASSAIC STEEL I BEAMS,

### USED AS GRILLAGE BEAMS IN FOUNDATIONS.



L = Length of Beam in Feet.

**B** = Length, in Feet, over which superimposed Load is distributed.

Total Safe Load on a single Beam, in Tons of 2000 Lbs., for the following values of L-B.

I	Веа	am.			Unloa	aded I	ength	of Be	am, L	-B,	in feet		
	Dep. Ins.	Wgt. lbs. per Ft.	5	6	7	8	9	10	11	12	13	14	15
	20 20 20 20 20 20 20	90 85 80 75 70 65		134 124 119 111	$106 \\ 102 \\ 95.0 \\ 91.2$	93.0 89.6 83.2 <b>7</b> 9.8	79.8 73.8	74.3 $71.7$ $66.5$ $63.9$	$67.6 \\ 65.2 \\ 60.5 \\ 58.1$	$62.0 \\ 59.8 \\ 55.4 \\ 53.2$	57.2 $55.2$ $51.2$ $49.1$	53.1 $51.2$ $47.5$ $45.6$	49.6 $47.8$ $44.3$ $42.6$
	18 18 18 18 18	80 75 70 65 60 55		87.5	92.4 82.4 <b>7</b> 5.0 <b>7</b> 1.6	80.8 $72.0$ $65.6$ $62.8$	58.4	64.7 $57.7$ $52.5$ $50.2$	58.8 52.4 47.7 45.6	53.9 48.1 43.8 41.8	49.8 44.4 40.4 38.6	46.2 $41.2$ $37.5$ $35.8$	43.1 $38.4$ $35.0$ $33.4$
	15 15 15 15 15 15 15 15 15	75 70 65 60 55 50 45 42	98.5	82.2 78.8 75.6 66.0 62.8 52.8	73.2 70.4 67.6 64.8 56.6 53.8 45.4 43.6	61.6 59.2 56.6 49.6 47.0 39.6	54.8 52.6 50.4 44.0 41.8 35.2	49.3 47.3 45.4 39.6 37.7 31.7	44.8 43.0 41.2 36.0 34.2 28.8	41.1 39.4 37.8 33.0 31.4 26.4	37.9 36.4 34.9 30.5 29.0 24.4	35.2 33.8 32.4 28.3 26.9 22.7	32.8 31.5 30.2 26.4 25.1 21.1
	12 12 12 12 12 12 12 12 12 12 12	65 60 55 50 45 40 35 31½	66.8 63.6 56.2 53.2 50.0 41.4	55.6 53.0 47.0 44.2 41.6 34.6	$   \begin{array}{r}     40.2 \\     38.0 \\     35.8   \end{array} $	41.8 39.8 35.2 33.2 31.3 25.9	37.1 $35.4$ $31.2$ $29.5$ $27.8$ $23.0$	33.4 $31.8$ $28.1$ $26.6$ $25.0$ $20.7$	30.4 28.8 25.6 24.2 22.7 18.8	27.8 26.5 23.5 22.1 20.8 17.3	25.7 24.5 21.6 20.4 19.2 15.9	23.9 22.8 20.1 19.0 17.9 14.8	22.3 21.2 18.8 17.7 16.7 13.8
			Ma	ıximu	n fiber	strair	1, 16,0	oo lbs.	per se	quare	inch.		

### PASSAIC STEEL I BEAMS,

### USED AS GRILLAGE BEAMS IN FOUNDATIONS.



L = Length of Beam in Feet.

**B** = Length, in Feet, over which superimposed Load is distributed.

Total Safe Load on a single Beam, in Tons of 2000 Lbs., for the following values of L-B.

Bea	ım.			Unloa	aded L	ength	of Be	am, L	-B,	in feet		
Dep. Ins.	Wgt. lbs. per Ft.	3	4	5	6	7	8	9	10	11	12	13
10 10 10 10 10 10	40 35 33 30 27 25		47.6 44.3	35.4 $34.4$ $28.8$ $27.2$	31.8 29.6 28.6 24.0 22.6 21.8	25.3 $24.6$ $20.6$ $19.4$	22.2 $21.5$ $18.0$ $17.0$	19.7 19.1 16.0 15.1	17.7 $17.2$ $14.4$ $13.6$	16.1 15.6 13.1 12.4	14.8 14.3 12.0 11.3	13.6 13.2 11.1 10.5
9 9 9 9 9 9	$ \begin{array}{r} 33 \\ 30 \\ 27 \\ 25 \\ 23\frac{1}{3} \\ 21 \end{array} $		36.4 34.6	$   \begin{array}{r}     \hline     29.0 \\     27.6 \\     26.2 \\     21.8 \\     21.2   \end{array} $	24.2 $23.0$ $21.8$ $18.2$ $17.6$ $16.7$	20.7 $19.7$ $18.7$ $15.6$ $15.1$	18.2 17.3 16.4 13.7 13.2	16.1 $15.4$ $14.6$ $12.2$ $11.7$	14.5 13.8 13.1 10.9 10.6	13.2 $12.6$ $11.9$ $9.9$ $9.6$	12.1 $11.5$ $10.9$ $9.1$	$     \begin{array}{r}       11.2 \\       10.6 \\       10.1 \\       8.4 \\       8.1     \end{array} $
8 8 8 8 8	27 25 22 20 18		$24.8 \\ 23.2 \\ 20.0$	$   \begin{array}{r}     \hline{20.6} \\     \hline{19.8} \\     \hline{18.6} \\     \hline{16.0}   \end{array} $	17.2 16.5 15.5 13.3 12.6	14.8 $14.2$ $13.3$ $11.4$	$     \begin{array}{r}       12.9 \\       12.4 \\       11.6 \\       10.0     \end{array} $	$\overline{11.5} \\ 11.0 \\ 10.3 \\ 8.9$	$     \begin{array}{r}       10.3 \\       9.9 \\       9.3 \\       8.0 \\       7.6     \end{array} $	$   \begin{array}{r}     9.4 \\     9.0 \\     8.5 \\     7.3 \\     6.9   \end{array} $	$   \begin{array}{r}     8.6 \\     8.3 \\     7.8 \\     6.7   \end{array} $	$   \begin{array}{r}     \hline       8.0 \\       7.6 \\       7.2 \\       6.1   \end{array} $
7 7 7 7	$ \begin{array}{c} 22 \\ 20 \\ 17\frac{1}{2} \\ 15 \end{array} $		18.1 15.3 14.1	14.5 12.2 11.3	1	$   \begin{array}{c}     10.4 \\     8.7 \\     8.1   \end{array} $	$9.1 \\ -7.6 \\ 7.1$	$\begin{bmatrix} 8.1 \\ 6.8 \\ 6.3 \end{bmatrix}$	7.6 7.3 6.1 5.7	$6.6 \\ 5.6 \\ 5.1$	$\begin{bmatrix} 6.1 \\ 5.1 \end{bmatrix}$	
6 6 6 6	15 12	$17.0 \\ 15.7 \\ 12.9$	i	$   \begin{array}{r}     10.2 \\     9.4 \\     7.8   \end{array} $	8.5 7.9 6.5	$\begin{bmatrix} 7.3 \\ 6.7 \\ 5.5 \end{bmatrix}$	$6.4 \\ 5.9 \\ 4.8$	$5.7 \\ 5.2$				
5 5 5 5	$   \begin{array}{r}     15 \\     13 \\     12 \\     \hline     9\frac{3}{4} \\     \hline     \end{array} $	l	$ \begin{array}{c c} 8.4 \\ 7.2 \\ 6.5 \end{array} $	$\frac{5.8}{5.2}$	5.6 $4.8$ $4.3$	$\begin{array}{c} 4.8 \\ 4.1 \\ 3.7 \end{array}$	$\begin{vmatrix} 4.2 \\ 3.6 \\ 3.3 \end{vmatrix}$					
4 4 4	$\begin{array}{ c c }\hline 10 \\ 7\frac{1}{2} \\ \hline 6 \end{array}$	4.1	3.1	$\frac{3.1}{2.5}$	2.6	1.8		per so	luare i	nch.		

### WIND BRACING.

Adequate provision must be made in all buildings to resist horizontal wind pressure. In mercantile and office buildings the walls and partitions provide a certain amount of resistance, though in the skeleton construction, now extensively used for tall buildings, the thin curtain walls and the extremely light tile partitions provide a very uncertain means of resistance.

A building, whose height does not exceed twice its base, and which has a well-constructed steel frame, scarcely needs a special system of wind bracing to make it secure, if the exterior walls are well built and of sufficient thickness, or if it is provided with substantial interior brick partitions. The columns should be of steel of any of the usual types, and be in lengths of two or more stories and thoroughly spliced at the joints with plates and rivets sufficient to make the section nearly continuous as far as the transverse bending is concerned. The column splices should be arranged so that not more than one-half the total number of columns splice at any one floor level. All connections between columns, girders and beams should be riveted.

Buildings, whose height exceeds twice their base, should have wind-bracing, of some form, calculated to resist a horizontal wind pressure of 30 lbs. per sq. ft. on their greatest exposed surface. It is seldom possible to use diagonal rods between the columns, and either of the two following forms of bracing are generally used in buildings. The columns in massive buildings may be considered as fixed at the ends, but in sheds and low mill and shop buildings the columns are not fixed at the ends unless special provision is made to anchor them very securely to foundations of much larger size than is generally provided. The total strains, due to the combination of the maximum effects of live, dead and wind loads, should not exceed the following, in lbs. per sq. in.,

•	Massive Buildings.	Shed Buildings.
Tension	.20,000	18,000
Compression	$.20,000 - 75 \frac{l}{r}$	$18,000 - 75 \frac{l}{r}$

The wind increases the compression on the leeward columns and also produces a bending in the columns, both of which effects must be considered.

H = total horizontal force acting at top of frame.

Posts considered as fixed at both ends.

All members constructed to resist tension or compression.



Tension or compression in brackets, 
$$= H \left(\frac{1}{2} + \frac{a}{4d}\right) \frac{y}{b}$$

" " posts,...= 
$$H\left(d + \frac{a}{2}\right) \frac{1}{l}$$

" " girder, .. = H 
$$\left(1 + \frac{a}{4d}\right)$$

Bending moment on posts,...  $= H \frac{a}{4}$ 

" " girder, .... = 
$$H\left(\frac{1}{2} - \frac{b}{l}\right)\left(d + \frac{a}{2}\right)$$

H = total horizontal force acting at top of frame.

Posts considered as fixed at both ends.

All members constructed to resist tension or compression.



Tension or compression in MN,...  $= H \left(1 + \frac{a}{4d}\right)$ 

" " OP, .... = H 
$$\left(\frac{1}{2} + \frac{a}{4d}\right)$$

" " diagonals, = 
$$H\left(\frac{d}{2} + \frac{a}{4}\right)\frac{y}{ld}$$

" " posts, .... = H 
$$\left(d + \frac{a}{2}\right)\frac{1}{l}$$

Bending moment on posts, ....  $= H \frac{a}{4}$ 

NOTE.—If the posts are not fixed at the ends, substitute 2a for a in the above formulæ.

### STRENGTH OF WOODEN BEAMS.

The following table gives the safe uniformly distributed loads, in lbs., on rectangular wooden beams one inch thick, for a maximum allowable fiber strain of 1,000 lbs. per sq. in.

For the different kinds of wood, ordinarily used in construction, the values given in the table are to be multiplied by the following factors:

Spruce or White Pine, 0.75 For 1.00 For White Oak, 1.00 ordinary Southern Yellow Pine, 1.25 purposes. 1.50 For purely static loads.

Span,				D	EPTH	IN	INC	HES.			
feet.	6	7	8	9	10	11	12	13	14	15	16
5	800	1090	$\overline{1420}$	1800							
6	670	910	1190	1500	1850	2240					
7	570	780	1020	1290	1590		2290				
8	500	680	890	1130	1390	1680	2000	2490	2740	3130	
9	440	610	790	1000	1230	1490	1780	2210	2430	2780	3160
10	400	540	710	900		<b>1</b> 340	1600	1990	2190	2500	2840
11	360	495	650	820	1010	1220	1450	1810	1990	2270	2590
12	330	450	590	750	930	1120	1330	1660	1820	2080	2370
13	310	420	550	690	860	1030	1230	1530	1690	1930	2200
14	290	390	510	640	800	960	1150	1430	1570	1790	2040
15	270	360	480	600	740	900	1070	1330	1460	1670	1900
16	250	340	450	560	700	840	1000	1250	1370	1570	1780
17	240	320	420	530	650	790	940	1170	1290	1470	1680
18	220	300	400	500	620	750	890	1110	1220	1390	1590
19	210	290	380	480	590	710	840	1050	1150	1320	1500
20	200	272	360	450	560	670	800	990	1090	1250	1420
21	190	260	340	430	530	640	760	950	1040	1190	1360
22	180	248	325	410	510	6 <b>1</b> 0	730	910	1000	1140	1300
23	175	237	310	390	480	590	700	870	950	1090	1240
24	167	228	297	380	460	560	670	830	910	1040	1190
25	160	218	285	360	450	540	640	800	880	1000	1140
26	154	210	275	350	430	520	620	770	840	960	1100
27	149	202	265	330	410	500	590	740	810	930	1060
28	143	195	255	315	400	480	570	710	780	890	1020
29	138	188	246	307	380	465	550	690	750	860	980
30	134	182	237	297	370	450	530	660	730	830	950

Loads given below the zig-zag line produce deflections liable to crack plastered ceilings. To obtain the safe load for any thickness, multiply the values given for one inch by the thickness of the beam.

To obtain the required thickness for any load, divide by safe load given for one inch.

### WHITE PINE PURLINS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total	Size of	1	D	istance	from	center	to ce	nter of	joists	, feet.	
Load.	Joists, inches.	1	2	3	4	5	6	7	8	9	10
	$ \begin{array}{c} 3 \times 8 \\ 4 \times 8 \\ 6 \times 8 \end{array} $	16.2	14.1	12.4	$10.3 \\ 11.2 \\ 12.9$	10.6	9.8	9.0	8.5	$\begin{array}{c} 6.9 \\ 8.0 \\ 9.8 \end{array}$	6.6 $7.6$ $9.3$
foot of roo	$3 \times 10$ $4 \times 10$ $6 \times 10$ $8 \times 10$	22.3	17.7	$\frac{15.5}{17.8}$	14.0	$\begin{array}{c} 12.9 \\ 15.0 \end{array}$	$\frac{11.8}{14.0}$	$10.9 \\ 13.4$	$10.2 \\ 12.5$	$\begin{array}{c} 9.6 \\ 11.8 \end{array}$	
40 lbs. per square foot of roof	$3 \times 12$ $4 \times 12$ $6 \times 12$ $8 \times 12$ $10 \times 12$	26.8	21.2 $24.4$	$18.6 \\ 21.3 \\ 23.4$	15.0 16.8 19.3 21.2 22.8	$15.5 \\ 18.0 \\ 19.7$	$14.2 \\ 16.9 \\ 18.5$	$13.1 \\ 16.0 \\ 17.7$	$12.3 \\ 15.0 \\ 16.9$	$11.6 \\ 14.2 \\ 16.2$	9.5 11.0 13.4 15.5 16.9
40 lbs.	$3 \times 14$ $4 \times 14$ $6 \times 14$ $8 \times 14$ $10 \times 14$	31.2	$\begin{array}{c} 24.7 \\ 28.5 \end{array}$	$21.6 \\ 24.8 \\ 27.2$	$19.6 \\ 22.6 \\ 24.7$	$18.1 \\ 21.0 \\ 23.0$	$16.5 \\ 19.8 \\ 21.6$	$ 15.3 \\ 18.8 \\ 20.6$	$14.3 \\ 17.5 \\ 19.6$	11.7 13.5 16.6 18.9 20.4	$15.7 \\ 18.1$
ڀ	$ \begin{array}{c} 3 \times 8 \\ 4 \times 8 \\ 6 \times 8 \end{array} $	15.5	12.3	10.8	$   \begin{array}{c}     8.4 \\     9.8 \\     11.3   \end{array} $	8.7	8.0	7.4	$6.0 \\ 6.9 \\ 8.5$	6.5	$   \begin{array}{r}     5.4 \\     6.2 \\     7.6   \end{array} $
foot of roo	$3 \times 10$ $4 \times 10$ $6 \times 10$ $8 \times 10$	$\frac{19.4}{22.4}$	$15.4 \\ 17.7$	$13.5 \\ 15.5$	$11.4 \\ 14.1$	$10.5 \\ 12.9$	$9.6 \\ 11.8$	$8.9 \\ 10.9$	$\begin{array}{c} 8.3 \\ 10.2 \end{array}$	7.8 9.6	
60 lbs. per square foot of roof.	$3 \times 12$ $4 \times 12$ $6 \times 12$ $8 \times 12$ $10 \times 12$	$23.4 \\ 26.8 \\ 29.4$	$18.5 \\ 21.3 \\ 23.4$	$16.2 \\ 18.6 \\ 20.4$	$14.1 \\ 16.8 \\ 18.5$	$12.7 \\ 15.5 \\ 17.2$	$11.6 \\ 14.2 \\ 16.1$	10.7 $13.1$ $15.1$	$10.0 \\ 12.3 \\ 14.1$	9.5 $11.6$	$10.9 \\ 12.7$
60 lbs	$3 \times 14$ $4 \times 14$ $6 \times 14$ $8 \times 14$ $10 \times 14$	$\begin{vmatrix} 27.2 \\ 31.4 \\ 34.3 \end{vmatrix}$	$21.6 \\ 24.8 \\ 27.2$	$18.9 \\ 21.8 \\ 23.8$	$16.6 \\ 19.7$	14.8 18.1 20.0	$13.5 \\ 16.6 \\ 18.9$	$12.5 \\ 15.4 \\ 17.6$	$11.7 \\ 14.3 \\ 16.6$	$11.0 \\ 13.6 \\ 15.6$	12.8

The maximum spans given in the table for the above loads, are determined by limiting the deflection to  $\frac{1}{400}$  of the span, and the maximum fiber strain to 750 lbs. per square inch, the lesser value given by either condition being used.

### YELLOW PINE PURLINS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total	Size of		Di	istance	from	center	to ce	nter of	joists	, feet.	
Load.	Joists, inches.	1	2	3	4	5	6	7	8	9	10
f.	$ \begin{array}{c} 3 \times 8 \\ 4 \times 8 \\ 6 \times 8 \end{array} $	19.4		14.8	13.4	11.3 12.5 14.3	11.7	11.2	10.5		8.2 9.4 11.5
foot of roo	$3 \times 10$ $4 \times 10$ $6 \times 10$ $8 \times 10$	24.2	21.2	18.5	$16.8 \\ 19.2$	14.2 15.6 17.9 19.6	14.7 $16.8$	$13.9 \\ 15.9$	13.2 $15.2$	$12.4 \\ 14.7$	10.2 11.7 14.2 15.6
40 lbs. per square foot of roof.	$3 \times 12$ $4 \times 12$ $6 \times 12$ $8 \times 12$ $10 \times 12$	29.1	23.1 25.4	22.2	$20.1 \\ 23.1$	$18.7 \\ 21.4 \\ 23.6$	$17.6 \\ 20.1 \\ 22.2$	16.7 $19.2$ $21.1$	$15.8 \\ 18.3 \\ 20.2$	14.9	$17.0 \\ 18.7$
40 lbs.	$3 \times 14$ $4 \times 14$ $6 \times 14$ $8 \times 14$ $10 \times 14$		26.9 29.6	25.9	23.5 $27.0$	$21.8 \\ 25.0 \\ 27.5$	$20.5 \\ 23.5 \\ 25.9$	$19.5 \\ 22.4 \\ 24.6$	$18.5 \\ 21.4 \\ 23.5$	$17.4 \\ 20.5 \\ 22.6$	14.3 16.6 19.8 21.8 23.6
یں	$3 \times 8$ $4 \times 8$ $6 \times 8$		14.8	12.9	11.7	$9.4 \\ 10.8 \\ 12.5$	9.9	9.2	8.6	8.1	6.7 $7.7$ $9.4$
foot of roc	$\begin{array}{c} 3 \times 10 \\ 4 \times 10 \\ 6 \times 10 \\ 8 \times 10 \end{array}$	23.3	18.5	$16.1 \\ 18.5$	$\begin{array}{c} 14.7 \\ 16.8 \end{array}$	13.6	$12.4 \\ 14.7$	11.5 $13.9$	$10.8 \\ 13.2$	$10.1 \\ 12.4$	9.6
60 lbs. per square foot of roof.	$3 \times 12$ $4 \times 12$ $6 \times 12$ $8 \times 12$ $10 \times 12$	28.0	22.2	$\frac{19.4}{22.2}$	$17.6 \\ 20.2 \\ 22.2$	$16.3 \\ 18.7$	14.9 $17.6$ $19.4$	$13.8 \\ 16.8 \\ 18.4$	12.9 15.8 17.6	$12.1 \\ 14.9 \\ 16.9$	9.9 11.5 14.1 16.3 17.6
60 lbs	$3 \times 14$ $4 \times 14$ $6 \times 14$ $8 \times 14$ $10 \times 14$	32.6	25.8	22.6 $25.8$	$20.5 \\ 23.6 \\ 25.8$	$\begin{array}{c} 19.0 \\ 21.8 \end{array}$	$17.4 \\ 20.5 \\ 22.6$	$16.2 \\ 19.6 \\ 21.5$	$15.1 \\ 18.5 \\ 20.5$	$14.2 \\ 17.4 \\ 19.7$	13.5

The maximum spans given in the table for the above loads, are determined by limiting the deflection to  $\frac{1}{400}$  of the span, and the maximum fiber strain to 1250 lbs. per square inch, the lesser value given by either condition being used.

### YELLOW PINE JOISTS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total	Size of	Di	istance fr	om cente	r to cent	er of jois	ts, inche	s.
Load.	Joists, inches.	12	14	16	18	20	22	24
oot	2×8 3×8	13.4 15.4	12.8 14.6	12.2 13.9	11.7 13.4	$11.0 \\ 12.9$	$\begin{array}{c} 10.5 \\ 12.6 \end{array}$	$\begin{array}{c} 10.1 \\ 12.2 \end{array}$
per square foot of floor.	$\begin{array}{c} 2 \times 10 \\ 3 \times 10 \end{array}$	16.8 19.2	15.9 18.2	15.3 17.4	14.7 16.7	$\frac{14.2}{16.2}$	13.7 15.7	$\frac{13.2}{15.2}$
per squa	$\begin{array}{c} 2 \times 12 \\ 3 \times 12 \end{array}$	20.2 23.1	19.1 21.9	$\frac{18.3}{20.9}$	$\begin{array}{c} 17.6 \\ 20.1 \end{array}$	17.0 19.4	16.5 18.9	15.8 18.3
80 lbs. p	$\begin{array}{c} 3 \times 14 \\ 4 \times 14 \end{array}$	26.9 29.6	25.5 28.2	24.4 26.9	$\frac{23.4}{25.9}$	$\begin{array}{c} 22.7 \\ 25.0 \end{array}$	$22.0 \\ 24.2$	21.3 23.6
80	$\begin{array}{c} 3 \times 16 \\ 4 \times 16 \end{array}$	30.8 33.9	29.2 32.2	$\frac{27.9}{30.8}$	26.8 29.6	25.9 28.6	$25.1 \\ 27.7$	24.4 27.0
oot	2×8 3×8	12.6 14.3	11.8 13.5	11.3 12.9	10.9 12.4	$10.3 \\ 12.0$	$9.8 \\ 11.7$	$\begin{array}{ c c }\hline 9.4 \\ 11.3 \\ \hline \end{array}$
100 lbs. per square foot of floor.	$\begin{array}{ c c c }\hline 2\times10\\ 3\times10\\ \end{array}$	15.6 17.8	14.8 16.9	$14.2 \\ 16.2$	13.6 15.6	$12.9 \\ 15.0$	$     \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.8 14.1
per squof floor	$\begin{array}{c} 2 \times 12 \\ 3 \times 12 \end{array}$	18.7 21.5	$\begin{array}{ c c }\hline 17.7 \\ 20.3 \\ \end{array}$	17.0 19.4	16.3 18.7	15.5 18.0	14.8 17.5	14.1 16.9
lbs. I	$\begin{array}{ c c c c }\hline 3\times14\\ 4\times14\\ \end{array}$	$25.0 \\ 27.5$	$23.7 \\ 26.1$	$22.6 \\ 25.0$	$21.9 \\ 24.0$	$21.0 \\ 23.2$	$20.4 \\ 22.5$	19.8 21.8
100	$\begin{array}{ c c c }\hline 3\times16\\ 4\times16\\ \end{array}$	28.5 31.4	27.0 29.8	$25.9 \\ 28.6$	$\begin{vmatrix} 25.0 \\ 27.5 \end{vmatrix}$	24.0 26.6	23.2 25.7	$\frac{22.6}{25.0}$
oot	$2 \times 8$ $3 \times 8$	11.7 13.4	$11.1 \\ 12.7$	$10.6 \\ 12.2$	10.0 11.7	9.4 11.3	8.9 11.0	8.6 10.5
uare f	$\begin{array}{ c c c }\hline 2\times10\\ 3\times10\\ \end{array}$	14.7 16.8	13.9 15.9	13.2 15.2	12.4 14.6	11.8 14.1	11.2 13.7	10.8 13.2
120 lbs. per square foot of floor.	$\begin{array}{ c c c }\hline 2\times12\\3\times12\\ \end{array}$	17.6 20.1	16.7 19.1	15.8 18.3	14.9 17.5	14.2 16.9	13.5 16.5	12.9 15.8
lbs. F	$3 \times 14 \\ 4 \times 14$	23.5 25.9	22.3 24.6	$21.3 \\ 23.6$	$20.4 \\ 22.6$	19.8 21.8	$\begin{array}{ c c }\hline 19.2\\21.2\\ \hline\end{array}$	18.6 20.6
120	$\begin{array}{c} 3 \times 16 \\ 4 \times 16 \end{array}$	26.8 29.6	25.5 28.2	24.4 26.9	23.4 25.8	$\begin{vmatrix} 22.6 \\ 25.0 \end{vmatrix}$	21.9 24.2	21.0 23.5

The maximum spans given in the table for the above loads, are determined by limiting the deflection to  $\frac{1}{4}$ 00 of the span, and the maximum fiber strain to 1250 lbs. per square inch, the lesser value given by either condition being used.

### YELLOW PINE JOISTS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total	Size of		Dis	stance f	rom ce	nter to	center	of joists	, feet.	
Load.	Joists, inches.	2	3	4	5	6	7	8	9	10.
125 lbs. per square foot of floor.		16.5 18.2 19.6 17.3 19.9 21.9 23.6 25.0 20.2 23.3 25.6 29.2 23.2 26.6 29.2 31.4	$12.2 \\ 14.5 \\ 15.9 \\ 17.1 \\ \hline 14.6 \\ 17.4 \\ 19.1 \\ 20.6 \\ 21.9 \\ \hline 17.1 \\ 20.2 \\ 22.2 \\ 24.0 \\ 25.5 \\ \hline 19.5 \\ 23.2 \\ 25.4 \\ 27.4 \\ 29.2 \\ $	$\begin{array}{c} 10.6 \\ 12.9 \\ 14.4 \\ 15.6 \\ \hline 12.7 \\ 15.5 \\ 17.3 \\ 18.6 \\ 19.8 \\ \hline 14.8 \\ 18.2 \\ 20.2 \\ 21.7 \\ 23.1 \\ \hline 16.9 \\ 20.6 \\ 23.1 \\ 24.8 \\ 26.4 \end{array}$	$\begin{array}{c} 9.5 \\ 11.5 \\ 13.3 \\ \underline{14.4} \\ 11.3 \\ 13.8 \\ 16.0 \\ 17.3 \\ \underline{18.4} \\ 16.2 \\ \underline{16.2} \\ 18.7 \\ \underline{20.2} \\ \underline{21.5} \\ \overline{15.1} \\ \underline{18.4} \\ \underline{21.3} \\ \underline{23.1} \\ \underline{24.6} \end{array}$	$\begin{array}{c} 8.6 \\ 10.5 \\ 12.2 \\ 13.6 \\ \hline 10.3 \\ 12.7 \\ 14.6 \\ 16.3 \\ 17.4 \\ \hline 12.1 \\ 14.8 \\ 17.1 \\ 19.0 \\ 20.3 \\ \hline 13.8 \\ 16.8 \\ 19.5 \\ 21.8 \\ 23.2 \\ \end{array}$	$\begin{array}{c} 8.0 \\ 9.8 \\ 11.3 \\ 12.6 \\ \hline 9.6 \\ 11.7 \\ 13.5 \\ 15.1 \\ 16.5 \\ \hline 11.2 \\ 13.7 \\ 15.8 \\ 17.7 \\ 19.3 \\ \hline 12.7 \\ 15.6 \\ 18.0 \\ 20.1 \\ 22.0 \\ \end{array}$	$\begin{array}{c} 7.5 \\ 9.2 \\ 10.5 \\ 11.8 \\ \hline 9.0 \\ 11.0 \\ 12.7 \\ 14.1 \\ 15.5 \\ \hline 10.5 \\ 12.8 \\ 14.8 \\ 16.5 \\ 18.1 \\ \hline 11.9 \\ 14.6 \\ 16.9 \\ 18.8 \\ 20.6 \\ \end{array}$	$\begin{array}{c} 7.1 \\ 8.6 \\ 9.9 \\ 11.1 \\ \hline 8.4 \\ 10.3 \\ 11.9 \\ 13.4 \\ 14.6 \\ \hline 9.9 \\ 12.1 \\ 14.0 \\ 15.6 \\ 17.1 \\ \hline 11.3 \\ 13.8 \\ 15.9 \\ 17.8 \\ 19.5 \end{array}$	$\begin{array}{c} 6.7 \\ 8.2 \\ 9.4 \\ 10.6 \\ \hline 8.0 \\ 9.8 \\ 11.3 \\ 12.7 \\ \hline 13.9 \\ \hline 9.4 \\ 11.5 \\ 13.2 \\ \hline 14.8 \\ 16.2 \\ \hline \hline 10.7 \\ 13.0 \\ 15.1 \\ 16.9 \\ 18.5 \\ \end{array}$
175 lbs. per square foot of floor.	$\begin{array}{c} 4\times10\\ 6\times10\\ 8\times10\\ 10\times10\\ \hline \\ 4\times12\\ 6\times12\\ 8\times12\\ 10\times12\\ \hline \\ 12\times12\\ \hline \\ 4\times14\\ 6\times14\\ 8\times14\\ 10\times14\\ \hline \\ 12\times14\\ \hline \\ 4\times16\\ 6\times16\\ 8\times16\\ 10\times16\\ 12\times16\\ \end{array}$	$\begin{array}{c} 14.8 \\ 16.3 \\ 17.5 \\ \hline 15.1 \\ 17.8 \\ 19.6 \\ 21.0 \\ 22.4 \\ \hline 17.7 \\ 20.8 \\ 22.8 \\ 24.5 \\ \underline{26.2} \\ 20.1 \\ 23.7 \\ 26.0 \\ 28.0 \end{array}$	14.2 15.3 12.3 15.1 17.1 18.4 19.5 14.4 17.7 19.9 21.4 22.9 16.4 20.1 22.8	$\begin{array}{c} 8.9 \\ 10.9 \\ 12.6 \\ 13.9 \\ \hline 10.7 \\ 13.1 \\ 15.1 \\ 16.6 \\ 17.7 \\ \hline 12.5 \\ 15.3 \\ 17.7 \\ 19.4 \\ 20.7 \\ \hline 14.2 \\ 17.5 \\ 20.1 \\ 22.2 \\ 23.7 \end{array}$	$8.0$ $9.8$ $11.3$ $12.6$ $\overline{9.6}$ $11.7$ $13.5$ $15.1$ $16.5$ $\overline{11.2}$ $13.7$ $15.8$ $17.6$ $\overline{19.3}$ $\overline{12.7}$ $15.6$ $18.0$ $20.1$ $22.0$	$\begin{array}{c} 7.3 \\ 8.9 \\ 10.3 \\ 11.5 \\ \hline 8.7 \\ 10.7 \\ 12.3 \\ 13.8 \\ 15.1 \\ \hline 10.2 \\ 12.5 \\ 14.4 \\ 16.1 \\ 17.7 \\ \hline 11.6 \\ 14.3 \\ 16.4 \\ 18.4 \\ 20.2 \\ \end{array}$	$\begin{array}{c} 6.7 \\ 8.2 \\ 9.5 \\ \hline 10.6 \\ \hline 8.1 \\ 9.9 \\ 11.4 \\ 12.8 \\ \hline 14.0 \\ \hline 9.4 \\ 11.5 \\ 13.3 \\ \hline 14.9 \\ \hline 16.3 \\ \hline 10.7 \\ 13.2 \\ 17.0 \\ 18.6 \\ \end{array}$	$\begin{array}{c} 6.3 \\ 7.7 \\ 8.9 \\ 10.0 \\ \hline 7.6 \\ 9.3 \\ 10.7 \\ 11.9 \\ 13.1 \\ \hline 8.9 \\ 10.8 \\ 12.5 \\ 13.9 \\ \hline 15.3 \\ \hline 10.1 \\ 12.3 \\ 14.2 \\ 15.9 \\ 17.4 \end{array}$	$\begin{array}{c} 5.9 \\ 7.3 \\ 8.4 \\ 9.4 \\ \hline 7.1 \\ 8.7 \\ 10.1 \\ 11.3 \\ \underline{12.3} \\ 8.4 \\ 10.2 \\ 11.8 \\ 13.2 \\ \underline{14.4} \\ 9.5 \\ 11.6 \\ 13.4 \\ 15.0 \\ 16.5 \end{array}$	5.6 6.9 8.0 8.9 6.8 8.3 9.6 10.7 11.7 7.9 9.7 11.2 12.4 13.7 9.0 11.0 12.7 14.2 15.6

The maximum spans given in the table for the above loads are determined by limiting the deflection to  $\frac{1}{400}$  of the span, and the maximum fiber strain to 1250 lbs. per square inch, the lesser value given by either condition being used.

### SAFE LOADS FOR SEASONED RECTANGULAR TIMBER POSTS,

Calculated from the following formulæ for the safe loads, in lbs. per square inch, on square-ended posts.

Southern Yellow Pine.  $\frac{1125}{1+\frac{l^2}{1100 d^2}}$ 

White Oak.

925  $1 + \frac{l^2}{1100 d^2}$ 

White Pine and Spruce. 800  $1 + \frac{l^2}{1100 d^2}$ 

These formulæ are deduced from the latest tests of timber posts, and give safe loads of one-fourth the ultimate strength for short posts, decreasing to one-fifth the ultimate for long posts.

Ratio of Length to Least Side,	Safe Loads, i	n lbs. per square in	nch of Section.
$\frac{l}{d}$	Southern Yellow Pine.	White Oak.	White Pine and Spruce.
12	1000	820	710
14	960	790	680
16	910	750	650
18	870	710	620
20	830	680	590
22	780	640	560
24	740	· 610	530
26	700	570	500
28	660	540	470
30	620	510	440
32	580	480	410
34	550	450	390
36	520	420	370
38	490	400	350
40	460	380	330

l = length of post, in inches.

d =width of smallest side, in inches.

### SAFE LOADS FOR

### SQUARE TIMBER COLUMNS,

In tons of 2000 lbs.

Unsup- ported			Si f C				
			Size of C	Jolumn, 1	n inches.		
length of Col., in ft.	6×6	8×8	9×9	10×10	12×12	14×14	16×16
6 8 10 12 14 16 18 20 22 24	12.8 11.7 10.6 9.54 8.46 7.38	22.7 21.3 19.8 18.4 17.0 15.5 14.1	29.6 28.0 26.3 24.7 23.1 21.5 19.8 18.2	35.5 33.7 31.9 30.1 28.3 26.5 24.7 22.9	51.1 49.0 46.8 44.7 42.5 40.3 38.2	69.6 67.0 64.5 62.0 59.5 57.0	91.0 88.0 85.2 82.3 79.4
6 8 10 12 14 16 18 20 22 24	14.8 13.5 12.2 11.0 9.73 8.64	26.2 24.6 22.7 21.1 19.5 17.8 16.3	34.0 32.4 30.4 28.4 26.5 24.7 22.7 21.1	41.0 39.1 36.7 34.6 32.4 30.5 28.2 26.4	59.1 56.9 54.0 51.1 49.0 46.1 43.9	80.4 77.8 74.5 71.3 68.3 65.5	105 102 98.5 94.7 90.9
6 8 10 12 14 16 18 20 22 24	18.0 16.4 14.9 13.3 11.9 10.4	32.0 29.9 27.8 25.8 23.7 21.8 19.8	41.6 39.4 36.9 34.7 32.3 30.0 27.8 25.7	50.0 47.6 44.7 42.3 39.5 37.0 34.6 32.2	72.0 69.1 65.5 62.6 59.8 56.2 53.3	98.0 94.6 90.7 86.9 83.6 80.0	132 128 124 120 115 111
	of Col., in ft.  6 8 10 12 14 16 18 20 22 24  6 8 10 12 14 16 18 20 22 24  6 8 10 12 14 16 18 20 22 24	of Col., in ft. 6×6  6 12.8 8 11.7 10 10.6 12 9.54 14 8.46 16 7.38 18 20 22 24  6 14.8 8 13.5 10 12.2 12 11.0 14 9.73 16 8.64 18 20 22 24  6 18.0 8 14.9 12 13.3 14 11.9 16 10.4 18 20 22	of Col., in ft.         6×6         8×8           6         12.8         11.7         22.7           10         10.6         21.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.3         12.4         12.4         12.2         12.4         12.5         14.1         15.5         14.1         15.5         14.1         12.2         24.6         12.2         24.6         12.2         24.6         12.2         24.6         12.2         24.6         12.2         24.6         12.2         24.6         12.2         24.6         12.2         24.6         12.1         18.6         18.64         19.5         17.8         16.3         22.7         14.8         16.3         22.7         14.8         16.3         22.9         12.1         13.3         27.8         16.3         27.8         14.4         11.9         25.8         14.4         11.9         25.8         16.3         22.7         18         21.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Safe load in pounds per square inch =  $\frac{C}{1 + \frac{l^2}{1100d^2}}$ 

Where l = length of column, in inches, and d = width of side, in inches.For White Pine or Spruce, C = 800; for White Oak, C = 925; for Southern Yellow Pine, C = 1125.

### ROOFS.

The types of roof trusses generally used for spans from 30 ft. to 100 ft. are shown on pages 226 and 227. The King and Queen truss, Fig. 1, is the type usually employed when the construction is a combination of wood and iron; the rafters, diagonal struts and bottom chord being of wood and the verticals of iron or steel rods. This type is sometimes used when the entire construction is to be of steel, though it is not as economical of material as the Belgian or Fink type of trusses, Figs. 2, 3 and 4, which are the most commonly used for steel roofs over mills, shops, warehouses, etc., for spans up to 100 ft. The lower chord is usually horizontal, though for some special reason it may be raised at the center as shown in Figs. 1, 2 and 3 on page 227. This camber of the lower chord materially increases the strains in the truss members, and should therefore, if economy of material is a consideration, be made as small as possible.

Roof trusses are usually made with riveted connections as being the cheapest construction for the usual short spans. A pair of angles may be used for the rafters if the purlins are supported only at the joints, but if the purlins are carried by the rafter at points between the joints, the bending strains produced are usually too great to be sustained by a rafter of this cross section, in which case, the rafter may consist of a pair of angles and a vertical web plate, deeper than the angles, forming a built-up **T** section. The bottom chord, main struts and tension members are best constructed of a pair of angles, while the secondary struts

and tension members may be single angles.

For long spans, or heavy loading, pin connections may be desirable, affording convenience in transportation and economy in erection. The compression members are conveniently made of a pair of channels, latticed, and the tension members of steel eye-

bars or square rods with loop eyes.

When the purlins rest on the rafter between the panel points, the rafter is subjected to a bending strain which must be considered. If the rafter is continuous over panel points it may be considered as a partially continuous beam, and at the center of span between joints the bending will produce compression in the upper fibers and tension in the lower fibers, while at the joints the bending produces reverse effects. The rafters must be proportioned so that the total compressive strain per square inch, due to direct compression and bending, shall not exceed ½ the elastic limit of the material. If the bending moment on the rafter between adjacent panel points be calculated as if for a beam with ends simply supported, the bending moments at the ends and at the

center of the panel for the continuous rafter may be taken as % of the maximum bending moment for the simple beam.

The slope of the rafter is usually determined by the kind of roof covering used. Slate should not be used on a slope less than I to 3 and preferably I to 2. Gravel should not be used on a slope greater than I to 4. Corrugated iron if used on a slope less than I to 3 is apt to leak under a driving rain, and when possible the slope should not be less than I to 2.

### ALLOWABLE STRAINS IN STEEL ROOF TRUSSES.

	lbs. per sq. in.
Tension (shapes)	15,000
Tension rods and eye-bars	
Maximum fiber stress on I beams	
Combined bending and direct strain	
Compression	
Compression	r

where l = length of member and r = least radius of gyration of member, both in inches.

### APPROXIMATE WEIGHT, PER SQUARE FOOT, OF ROOF COVERINGS, EXCLUSIVE OF STEEL CONSTRUCTION.

Corrugated iron, unboarded, No. 26 to No. 181 to 3 lbs.
Felt and asphalt, without sheathing 2 "
Felt and gravel, " "8 to 10 "
Slate, without sheathing, $\frac{3}{16}$ to $\frac{1}{4}$ ,
Copper, " to $1\frac{1}{2}$ "
Tin, " "1 to $1\frac{1}{2}$ "
Shingles, with lath
Skylight of glass, $\frac{3}{16}$ to $\frac{1}{2}$ , including frame4 to 10 "
White pine sheathing, 1" thick
Yellow " 1" thick 4 "
Spruce sheathing, 1" thick 2 "
Lath and plaster ceiling8 to 10 "
Tile, flat
Tile, corrugated8 to 10 "
Tile, on 3" fireproof blocks30 to 35 "

The weight of the steel roof construction must be added to the above. For ordinary light roofs, without ceilings, the weight of the steel construction may be taken at 5 lbs. per square foot for spans up to 50 ft., and I lb. additional for each IO ft. increase of span.

It is customary to add 30 lbs. per square foot to the above for wind and snow. No roof should be calculated for a total load

less than 40 lbs. per sq. ft.

The total load found as above is to be considered as distributed over the entire truss. It is not necessary to consider the separate effects of wind and snow on spans of less than roo ft., but for greater spans separate calculations should be made.

The relation between the velocity and pressure of wind against surfaces at right angles to the direction of the wind is given in the following table, based upon experiments conducted by the U.S. Signal Service, at Mt. Washington.

Vel. in miles	Pressure, lbs. per	
per hour.	square foot.	
10	0 . 4	.Fresh breeze.
20	1.6	
30	3.6	.Strong wind.
40	6.4	. High wind.
50	10.0	.Storm.
60	14 . 4	. Violent storm.
80	25.6	. Hurricane.
100	40.0	Violent Hurricane.

The components of pressure caused by wind acting upon inclined surfaces are given in the following table:

A = Angle of surface of roof with direction of wind.

F = Force of wind, in lbs. per square foot.

N = Pressure normal to surface of roof.

V = Pressure perpendicular to direction of wind.

H = Pressure parallel to direction of wind.

Angle of Roof.	5°	10°	200	300	40°	50°	60°	70°	80°	900
$N = F \times$	. 125	.24	. 45	. 66	.83	.95	1.00	1.02	1.01	1.00
$V = F \times$	. 122	.24	.42	.57	.64	.61	.50	.35	.17	.00
$H = F \times$	.01	.04	.15	.33	.53	.73	.85	.96	.99	1.00

### **ROOF TRUSSES**

LIGHT LINES INDICATE TENSION MEMBERS
HEAVY LINES INDICATE COMPRESSION MEMBERS



### CAMBERED ROOF TRUSSES

LIGHT LINES INDICATE TENSION MEMBERS
HEAVY LINES INDICATE COMPRESSION MEMBERS







### MAXIMUM STRAINS IN KING AND QUEEN ROOF TRUSSES.

Fig. 1, Page 226.

To find the maximum strains in any member of these trusses, multiply the co-efficients given here below.

I.	For rafters, by the	panel load	 ×	length of rafter depth of truss
2.	For bottom chord,	"	 ×	y span of truss depth of truss

2	For inclined struts,	66	~	length of strut
3.	Tot memed struts,			length of rod

4.	For	vertical	rod,	66								X	I	
----	-----	----------	------	----	--	--	--	--	--	--	--	---	---	--

	Member.	14 Panel.	12 Panel.	10 Panel.	8 Panel.	6 Panel.	4 Panel.		
Bottom Chords.	0 2 2 3 3 4 4 5 5 6 6 7	6.5 6. 5.5 5. 4.5 4.	5.5 5. 4.5 4. 3.5	4.5 4. 3.5 3.	3.5 3. 2.5	2.5 2.	1.5		
Rafters.	0 1' 1' 2' 2' 3' 3' 4' 4' 5' 5' 6' 6' 7'	6.5 6. 5.5 5. 4.5 4. 3.5	5.5 5. 4.5 4. 3.5 3.	4.5 4. 3.5 3. 2.5	3.5 3. 2.5 2.	2.5 2. 1.5	1.5		
Inclined Struts.	1' 2 2' 3 3' 4 4' 5 5' 6 6' 7	$\begin{array}{c} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 3.0 \end{array}$	$ \begin{array}{c} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \end{array} $	0.5 1.0 1.5 2.0	0.5 1.0 1.5	0.5	0.5		
Vertical Rods.	1 1' 2 2' 3 3' 4 4' 5 5' 6 6' 7 7'	$ \begin{array}{c c} \hline 0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ 2.5 \\ 6. \end{array} $	$ \begin{array}{c c} 0\\0.5\\1.0\\1.5\\2.0\\5.\end{array} $	$0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 4.$	0 0.5 1.0 3.	0.5 2.	0		

### MAXIMUM STRAINS IN BELGIAN OR FINK ROOF TRUSSES.

Figs. 2, 3 and 4, Page 226.

Ratio of depth to length of span.			0.333	$0.289$ $\frac{1}{3.464}$	0.250	0.200	0.167	0.125			
Incl	linat'n of	rafters.	33° 41′	30°	26° 34′	21° 48′	18° 26′	14° 2′			
4.	Bottom chord.	$\begin{array}{ c c }\hline 01\\12\\22\\\end{array}$	5.25 4.50 3.00	6.06 5.19 3.46	7.00 6.00 4.00	8.75 7.50 5.00	$     \begin{array}{r}       10.50 \\       9.00 \\       6.00     \end{array} $	$14.00 \\ 12.00 \\ 8.00$			
Fig.	Top	01' 1'2' 2'3' 3'4'	6.30 5.75 5.20 4.65	7.00 6.50 6.00 5.50	7.83 7.38 6.93 6.48	9.42 9.05 8.68 8.31	11.08 10.76 10.45 10.13	14.44 14.20 13.95 13.71			
8-panel truss,	Tension braces.	$egin{array}{c} 2\ 3\ 3\ 4'\ 12'\ \&\ 32' \ \end{array}$	1.50 2.25 0.75	1.73 2.60 0.87	$egin{array}{c} 2.00 \\ 3.00 \\ 1.00 \\ \hline \end{array}$	$2.50 \\ 3.75 \\ 1.25$	$3.00 \\ 4.50 \\ 1.50$	4.00 6.00 2.00			
	Struts.	11' & 33' 2 2'	0.83 1.66	$0.87 \\ 1.73$	0.89 1.78	0.93 1.86	$0.95 \\ 1.90$	0.97 1.94			
33 33	Bottom chord.	01	$3.75 \\ 2.25$	4.33 2.60	5.00 3.00	6.25 3.75	7.50 4.50	10.00 6.00			
truss, Fig.	Top chord.	0 1' 1'2' 2'3'	4.51 3.53 3.40	$5.00 \\ 4.00 \\ 4.00$	5.59 4.55 4.70	6.74 5.59 6.00	7.91 6.65 7.29	10.31 8.77 9.83			
6-panel truss,	Tension brace.	1 3′	1.50	1.73	2.00	2.50	3.00	4.00			
9	Struts.	11' & 12'	.93	1.00	1.07	1.22	1.34	1.62			
Fig. 2.	Bottom chord.	0 1 1 1	$2.25 \\ 1.50$	2.60 1.73	$\frac{3.00}{2.00}$	$3.75 \\ 2.50$	4.50 3.00	6.00 4.00			
4-panel truss, Fig. 2.	Top chord.	0 1' 1'2'	2.70 2.15	3.00 2.50	3.35 2.90	4.04 3.67	4.75 4.44	6.19 5.95			
4-pane	Rod. Strut.	12' 11'	0.75 0.83	$0.87 \\ 0.87$	1.00 0.89	1.25 0.93	1.50 0.95	2.00 0.97			

To find the maximum strain in any member of these trusses, multiply the coefficients given in the table above by the panel load.

### MAXIMUM STRAINS IN CAMBERED BELGIAN OR FINK ROOF TRUSSES.

CAMBER =  $\frac{1}{6}$  TOTAL HEIGHT.

Figs. 1, 2 and 3, Page 227.

To find the maximum strain in any member of these trusses, multiply the coefficients given in the table below, by the panel load.

Ratio of depth to length of span.			0.333	$0.289$ $\frac{1}{3.464}$	0.250	0.200	0.167	0.125			
Incl	inat'n of	rafters.	33° 40′	30°	26° 34′	<b>21° 4</b> 8′	18° 26′	14° 2′			
ಣೆ	Bottom chord.	$\begin{bmatrix} 01\\12\\22 \end{bmatrix}$	7.17 6.15 3.60	8.44 7.23 4.16	9.90 8.48 4.80	12.61 10.81 6.00	15.31 13.12 7.20	20.66 $17.71$ $9.60$			
Fig.	Top	0 1' 1'2' 2'3' 3'4'	8.49 7.94 7.39 6.83	9.63 9.13 8.63 8.13	10.96 10.51 10.06 9.61	13.49 13.11 12.74 12.37	16.05 15.73 15.41 15.10	21.21 20.98 20.74 20.49			
8-panel truss,	Tension braces.	2 3 3 4' 12' & 32'	2.87 3.89 1.02	3.37 4.58 1.21	3.96 5.37 1.41	5.04 6.85 1.80	6.12 8.31 2.19	8.26 11.21 2.95			
	Struts.	11' & 33' 2 2'	0.83 1.66	0.87 1.73	0.89 1.79	0.93 1.86	$0.95 \\ 1.89$	0.97 1.94			
Fig. 2.	Bottom chord.	01 11	5.12 2.70	$6.03 \\ 3.12$	7.07 3.60	$9.01 \\ 4.50$	10.94 5.40	14.76 7.20			
6-panel truss, 1	Top	01' 1'2' 2'3'	6.09 4.89 4.96	6.88 5.63 5.88	7.83 6.48 6.93	9.64 8.10 8.89	11.47 $9.72$ $10.83$	15.15 12.98 14.67			
6-pan	Tie. Struts.	1 3' 11' & 12'	$\frac{2.66}{1.04}$	3.13 1.15	$\begin{bmatrix} 3.67 \\ 1.26 \end{bmatrix}$	4.69 1.49	5.69 1.71	7.67 2.17			
Fig.1.	Bottom chord.	01 11	3.07 1.80	3.62 2.08	4.24 2.40	5.40 3.00	6.56 3.60	8.85 4.80			
4-panel truss, Fig. 1.	Top chord.	0 1' 1'2'	3.64 3.09	4.13 3.63	4.70 4.25	5.78 5.41	6.88 6.56	9.09 8.85			
4-pane	Tie. Strut.	1 2' 1 1'	1.43 0.83	1.69 0.87	1.98 0.89	$2.52 \\ 0.93$	3.06 0.95	4.11			

### MAXIMUM STRAINS

### IN TRUSSES WITH PARALLEL CHORDS.

The maximum strains in the different members of ordinary trusses with parallel chords can be determined by the use of the following tables, if the dead and moving loads are given. In many cases it will be sufficient to consider only a uniform dead load and a uniform live load. The third column gives the influence of a heavier load in front of a uniform load; such as a locomotive at the head of a train of cars.

The panel points are numbered, beginning with o at the abutment, those of the bottom chord with plain numbers and those of the top chord with a prime (') so as to indicate the position of the different members without it being necessary to refer to the diagram.

In calculating these tables, the loads were supposed to be concentrated at the lower chord joints for through-bridges, and at the upper chord joints for deck-bridges. In through-bridges the strain, obtained in this manner, for the web members under compression should be increased by the weight of a panel of top chord and top lateral bracing.

Highway bridges are calculated for a live load of 100 lbs. per sq. ft. of floor for all spans up to 100 ft., and 80 lbs. for spans over 200 ft., due provision being made for concentrated loads, such as heavy steam road rollers or electric cars. The dead weight of ordinary highway bridges, exclusive of timber flooring, is given, approximately, by the following formula:

Weight of metal, lbs. per lineal foot of span  $= \frac{1}{5} b l + 150$  where l = length of bridge, and b = width of floor, both in feet.

Railroad bridges are calculated for concentrated loads typical of the actual load of two locomotives at the head of a train of cars on each track. The following diagram of such a loading is from Theodore Cooper's 1896 Specification for Railroad Bridges, and represents two 106.5 ton locomotives followed by a uniform load of 3,000 lbs. per lineal ft. on one track. For short spans an alternate loading of 100,000 lbs., equally distributed on two driving wheel axles spaced  $7\frac{1}{2}$  ft. centers, is also specified.

Heavier or lighter locomotives of the same type as that shown by the diagram will produce strains in proportion to their weights.

15000		19500 19500 19500	0	00000	19500 19500 19500 3000 3000 19504
ф ( 8'*	) (5*5*5*-9	φφφ -+5*6*5*	<u></u> . 8. ∗	6 ×5 ×5 × 5 × 6	φφφφ **5**6*5*5

This loading may be represented by an equivalent uniform load; or, it may also be represented by a uniform load combined with an engine excess. The representation by an equivalent load is not applicable to the calculation of trusses with more than one system of web bracing. Such trusses may be calculated by a uniform load combined with an engine excess. Either method is only an approximation and may give results materially in error. The following table gives the equivalent loads by either method for the above loading for a single track.

Span		Uniform Load, ot of Track.		Uniform Load, vith Engine Excess.		
in feet.	Moments.			Engine Excess, lbs.		
10	10,000	12,500	3,400	33,000		
15	7,500	10,000	11	32,000		
20	6,600	8,100	//	32,000		
25	5,900	6,800	//	31,000		
30	5,500	6,300	"	30,000		
40	4,900	5,600	"	30,000		
50	4,600	5,200	//	30,000		
75	4,100	4,700	"	30,000		
100	4,000	4,500	"	30,000		
150	3,800	4,200	//	30,000		
200	3,700	3,900	"	30,000		
300	3,500	3,700	"	30,000		

The weight of track material (ties, rails and guard-rails) is about 400 lbs. per ft. of single track. The weights of railroad bridges, per lineal ft. of span, exclusive of track material, designed for the above loading, are given, approximately, by the following formulae, where l = length of span in ft.

Single t	rack,	deck plate girder,	9 l + 100
"	"	" lattice "	8l + 100
66	66	through pin truss,	6l + 400
		deck " "	6 l + 300
Double	track	, through pin truss,	12 l + 1000
		deck " "	12 l + 800

For other loadings these formulae will vary about  $\frac{2}{3}$  of one per cent. for each one per cent. variation of live load.

### EXAMPLE OF APPLICATION OF TABLE.

WARREN TRUSS, DECK BRIDGE WITH INTERMEDIATE POSTS, FOR SINGLE TRACK RAILROAD.

Span, 150'; Depth, 20'.

Number of panels 10, of 15' each.

Dead load, 1,600 lbs. per lin. ft. of bridge.

Live load, 3,400 lbs. per lin. ft. of bridge.

D = dead load = 12,000 lbs. per panel for I truss.

L = live load = 25,500 " " " " " " "

E = excess of locomotive weight = 15,000 lbs. for I truss.

$$l = \frac{25,500}{10} = 2,550$$

$$e = \frac{15,000}{10} = 1,500$$

Length of diagonal members, 25 ft.

Sec. 
$$=\frac{25}{20} = 1.25$$
 Tang.  $=\frac{15}{20} = 0.75$ 

Strain in middle piece of bottom chord 4-6,

12.5 (D + L) = 
$$468,750$$
  
25 e =  $37,500$   
 $506,250 \times \text{tang.} = 379,687.$ 

Compressive strain in brace, 45'.

0.5 D = 6,000  
15. 
$$l = 38,250$$
  
5.  $e = \frac{7,500}{51,750} \times \text{sec.} = 64,687.$ 

Tensile strain in brace, 5' 6.

$$\begin{array}{rcl}
-0.5 & D = -6,000 \\
10. & l = 25,500 \\
4. & e = 6,000 \\
\hline
& 25,500 \times sec. = 31,875.
\end{array}$$

It will be observed that, by beginning with 0 at the lefthand abutment, the compression member 45' becomes the tension member 5' 6, and the maximum strains change from 64,687 compression to 31,875 tension. The strains in the other members are found in a similar manner.

The load on any of the intermediate posts is found as follows:

15 ft. 
$$\times$$
 1,700 = 25.500  
E =  $\frac{16,000}{41,500}$ 

### TRUSSES WITH PARALLEL CHORDS













## MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN SINGLE INTERSECTION RECTANGULAR TRUSSES.

(Fig. 1, page 234.) End-posts Inclined, Equal Panels, Through and Deck Bridges,

_				
	4 Panel Truss.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} D & L & e \\ 1.5 & 1.5 & 3 \\ 2. & 2. & 4 \end{array}$	genera! live
	5 Panel Truss.	1 2 3 4 5 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 8 8 9 5 6 8 4 ° ° 6 8 4 ° ° 6 8 4 ° ° 6 8 4 ° ° 6 8 4 ° ° ° 6 8 4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	anel. mel. ne load over pel. el.
	6 Panel Truss.	D / 2.5 15 10 0.5 6 0.5 6 1.5 1 10 1.5 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10 1.5 1 10	6 2.5 2.5 3 10 1 10 4. 4.5 4.5 8	<ul> <li>n = No. of panels.</li> <li>D = Dead load per panel.</li> <li>L = Live load per panel.</li> <li>E = Excess of engine load over general live load on 1 panel.</li> </ul>
	7 Panel Truss.	321 6 321 5 215 5 1 10 4 0 6 3 -1 3 2 ls: multiply by	1 D L e 6 5 5 10 6 6 12	
6	8 Panel Truss.	1.00.5555 5.00.5555	c D L c D L c D L c D L c D L D L D L C D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D L c D	f panel truss
	9 Panel Truss.	~ % \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6 D L 6 9 4 4 8 16 7 7 14 8 16 19 9 18	Length of panel
(1.18.1) Push (2.41)	10 Panel Truss.	D 2 3.5 36 8 8 9 6 7 8 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	D L c D L c D L D L D L D D D D D D D D	Tang. =
202	11 Panel Truss.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c D L c D L 4.5 4.5 20 9 9 18 8 8 8 8 71212 22410 510 5	15 15 30 mber
1245 - 24.)	12 Panel Truss.	D 2.5.45.50 3.5.56611 2.5.55510 1.5.28 7 2.5.20 2.5.21 2.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5.20 3.5	D L 6 5.5 5.511 10. 10. 20 13.513.527	17.5 18. 18. of tru
17 .97		Dispense of the second of the	8000 tt	5 6 Length
٢	Member.	Chro'gh   Deck   Post.   Post.   Post.   29.2   33.4   44.4   55.5   56.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   66.6   6	Top. 1,2%	5, 6, 5, 8ec. =
		Ehro'gh Post. 2 2/ 3 3/ 5 5/ 6 6/	•	

## IMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN DOUBLE INTERSECTION RECTANGULAR TRUSSES.

WITH INCLINED END-POSTS, EQUAL PANELS, FOR THROUGH AND DECK BRIDGES. (Fig. 2, Page 234.)

_			
	rels.	00:0000040 000000400	
	18 Panels. 17 Panels. 16 Panels. 14 Panels. 13 Panels. 12 Panels. 11 Panels. 10 Panels.	748000000 748000000000000000000000000000	
	- I	2 4 5 H	
	iels.	^00081-074.83	
	Рап		
	II	20 20 13 00 00 00 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	ec.
	els.	9 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	by S
	Pan	25 20 20 20 20 20 20 20 20 20 20 20 20 20	ers
	12	66 66 61 17 5 6 66 66 11 2 6 6 6 6 11 2 6 6 6 6 11 2 6 6 6 6	nem
	ls.	211100 000 000 000 000 000 000 000 000 0	ed n
Ì	апе	7 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	clin
	13 F	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Multiply for inclined members by Sec.
	s,	~ EST10 0 0 × 9 × 4	ly fe
	anel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ultip
	14 P	288325 1141 100 27 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M
	Н	d     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l     l <td></td>	
`	mels	250 250 250 250 250 250 250 250 250 250	
	5 Pa	105 1 105 1	
	н	2 11 11 12 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	
	nels	201 201 201 201 201 102 601 103 103 103 103 103 103 103 1	
,	і Ра	7   7   7   7   7   7   7   7   7   7	
	)i	C   C   C   C   C   C   C   C   C   C	
	sels.	136 136 6 136 136 16 63 6415 56 5614 46 4913 39 4212 29 3611 22 3010 12 25 9 5 20 8 -5 16 7 -12 12 6	
	Раг	\\ \text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ext{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitin}\$\$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\	
	17	136 63 56 56 39 89 89 89 122 123 124 125 125 125 125 125 125 125 125 125 125	
	els.	d / / / / / / / / / / / / / / / / / / /	
	Pane	~ 22 x 22 x 4 x 2 x 2 x 2 x 2 x 2 x 2 x 2	
	18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
	rs.	10000100100000000000000000000000000000	anel
	Inclined Memb'rs.	00 00 00 01 10 10 10 10	n = Number of panels.
			lber 1 100
	i.	Ded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nun
	Vertical Members.		= 2
	Ve ₁ Men	ugh. 25.74.39.79.99.99.99.99.99.99.99.99.99.99.99.99	~ \
		Through. 332, 444, 552, 66, 777, 99,	
-			

D = Dead load per panel.

L = Live load per panel.

E = Excess of engine load over general live load on first panel loaded

"one. " vertical

6 ---- = 7  $d = \frac{D}{d}$ 

## MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN DOUBLE INTERSECTION RECTANGULAR TRUSSES—Continued.

ro Panels.	D+L 4.5 6.5 6.5 10.5 11.5 22 12.5 24 4'5'=3'4'
11 Panels.	74/ 6 10 13 10 24 145 28 163 30 159 30 159 30
12 Panels.	6'= 4'5',  6'= 4'5',
	<u>a a</u>
mels.	* * * * * * * * * * * * * * * * * * *
14 Panels. 13 Panels.	#67= *67= *67= *67=
lels.	2, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46
	D+L 6.5 14.5 14.5 18.5 18.5 21.5 23.5 48 24.5 49 24.5 49 24.5 49 24.5 49 24.5 49 24.5
els.	26 26 36 36 36 57 57 56 56 56 57 56
15 Panels.	4+1 105 105 105 303 303 357 393 417* 423 423 411
	6, 7, 64 6, 7, 64 6, 7, 65 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
r6 Panels.	$\begin{array}{c c} D+1 & \epsilon \\ 7.5 & 15 \\ 11 & 28 \\ 17 & 39 \\ 26 & 55 \\ 29 & 60 \\ 31 & 63 \\ 32 & 64 \\ 7' 8'=6'7' \end{array}$
els.	~258383835 268383835 268383835 27835 2883838 2883838 2883838 2883838 2883838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 2886 28838 28838 28838 28838 28838 28838 28838 28838 28838 28838 28
17 Panels.	$\begin{array}{c} d+1 \\ 136 \\ 199 \\ 311 \\ 403 \\ 311 \\ 403 \\ 481 \\ 539 \\ 583 \\ 607* \\ 8:9 = \\ 89 = \\ 597 \\ 597 \\ \end{array}$
lels.	27.88.85.25.25.25.25.25.25.25.25.25.25.25.25.25
18 Panels.	1+8810188884884 1+881018888488489489
Bottom Chord.	0000400500 000400500
Top	<b>あんの</b> が予えた よのおかになる

Sec. = Length of inclined member Depth of truss

Chords: multiply by Tang.

Length of panel

Tang. = Depth of truss

INTER-		
SINGLE	SES.	
S IN	TRUE	
LOAD	UGH	
LIVE	THRO	
AND ]	RREN	
)EAD	WA.	۶
X I	OF	
) B	AR	
LAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN SINGLE INTER-	SECTION TRIANGULAR OR WARREN THROUGH TRUSSES.	
STRAINS	SECTION	
MAXIMUM		

				· · · · · · · · · · · · · · · · · · ·	
	ls.	000		<i>◦</i> ⋈ <del>4</del>	
	ane	~ 00	nel. ove	0.5 1.0	
	4 Panels.	0.5	e pa oad	F0.1	田 2
	6 Panels.	els.	oubl oubl ne 1	0400	
		7 9 % % % % % % % % % % % % % % % % % %	engi	H	0
		D 0 0	of per living	+-00	7   %
	8 Panels.	512 6 1 6 4 0.5 2 5 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= Dead load per double paner. = Live load per double panel. = Excess of engine load over general live load.	1525	-=1
		2000 N	Exc Exc ge	,	7
	3 Pa	00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	L = Locau load per double panel. L = Live load per double panel. E = Excess of engine load ove	4.5.5	
		~ \omega		24 20 20 20	
	10 Panels.	~ 0 ci o ci			_,
	o Pa	anor	ces	+ c 4 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Length of panel Depth of truss
		•	Length of braces Depth of truss	H 004800	Length of pane Depth of truss
	nels.	~000000 ~000000	h of	20848888 888888	gth
	Pal	D 2.530 1.520 0.512 -0.5 6 -1.5 2	engt Dep	0.5 5.5 5.5 6.5 8.5 9.5	Len
34.	14 Panels.   12 Panels.	H01001		$\vdash$	i
e 2	nels.	7 42 30 30 10 80 80 12 6 4 6	Sec. =	, 12, 12, 12, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	Tang.
Page 234.)	Par		3 [	TE 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H
ŝ		A		A	
(Fig.	16 Panels.	$\begin{array}{c c} D & \frac{\ell}{c} \\ 3.55614 \\ 2.54212 \\ 1.53010 \\ 0.520 \\ -0.512 \end{array}$	4.05	288 448 50 50 50 50 50 50 50	5
<u> </u>	Pan		क क	D+L 3.5 7. 12. 13.5 15.5	:0
1		D 8 8 4 0 0	<u> </u>		
	els.	~ 5124 S	2 4 Ci	~ 50 50 50 50 50 50 50 50 50 50 50 50 50	38
	18 Panels.		30 cs	+L 8114 118 119 119 119	22
	81		797	A	
	ils.	~ 81 4 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0004	~10 80 80 80 80 80 80 80 80 80 80 80 80 80	966
	20 Panels.	250 572 572 572 572 572 573 573	<u>889</u>	1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70
	20]	$\begin{array}{c} D & \frac{l}{c} \\ 4.59018 \\ 3.57216 \\ 2.55614 \\ 1.54212 \\ 0.53010 \end{array}$	979	D+L 9.5 12.5 16.5 18.5 22.5	22 22 24 25 25 25
	rs.	Tens. 1' 2 3' 4 3' 4 5' 6 5' 6 7' 8 9' 10 9' 10		ಕ್ಷಿ ಆಭ್ರತ್ತ ಹ	no á
	Members.			or	
	Me	Comp. 0 1/. 2 3/. 4 5/. 6 7/. 8 9/.	13.4	Q04004700	604
		000400	120		
		ly by Secant.	qiilulf	Itiply by Tang.	пW

INTER-	
ODUCED BY DEAD AND LIVE LOADS IN SINGLE INTER-	5. (Fig. 3, Page 234.)
IN	ig. 3,
ADS	(F)
Loz	SES
IVE	TRUE
AND I	N DECK
VD 7	EN I
DE.	$N_{ m ARR}$
BY	M
ED	OR
DUC	LAR
E P	NGU
S	RIA
STRAINS I	L
ST	SECTION TRIANGULAR OR $\nabla$
MU.	SEC
XIM	
MA	

	l vi	0 € ⊟	0 to 4
	nel	7 4 1	i)
	4 Panels.	D = 0	D+I
	100	<i>∞</i> 52 62 H	° 10 ∞ €
	6 Panels.	~ 0 <del>4 L</del>	
34.	Pa	0.10 0.55 0.55	0 1+1 2:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5
G.	9	H=00-	
ag	ls.	0 F 70 20 H	- 7 11 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
	ane	20 00 4 1	구
WARREN DECK TRUSSES. (Fig. 3, Page 234.)	8 Panels.	D 00 - 1	T C C 4 4
F	ls.	-00700H	912223 22223
zý.	ane	D 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
百 百	0 P	0000000	0.5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7
SS			F
RU	els.	- 1057001	36 33 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38
Ei.	ane	255 255 260 260 27 27 27 27 27 27 27 27 27 27 27 27 27	00001011
CK	14 Panels.   12 Panels.   10 Panels.	U 22 21 0 1 24	A
Ĕ		- ELI307081	~ E 4 E 0 2 2 4 4 4 6 0 5 5 4 4 6 0 5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
<del></del>	ane	D 3.5.49 1.5.85 1.5.85 1.5.85 1.5.9 1.5.4 1.5.4	
EN	P	<u> जिल्लाचित्र</u>	0+1 8.5. 11.5. 12.5. 12.5.
IR.	71	HEST-00-15	
AI	sls.	64 15 64 15 49 13 36 11 95 9 16 7 1 1	65 55 55 55 55 55 55 55 55 55 55 55 55 5
$\geq$	ane	256 256 256 256 256 256 256 256 256 256	1-12-00-1000
SECTION TRIANGULAR OR	16 Panels.	U40010100	H42034
ا بم	s.	ಿ ಸರ್ಪದಲ್ಲಾಣ	88773565 81773565
[V]	18 Panels.	7 8 8 1 8 1 8 1 8 1 8 1 9 8 1 9 8 1 9 8 1 9 9 8 1 9 9 9 9	
10	3 P		D+L 4.5 8. 111.5 116.5 118. 20.5 20.5
5	H	D	
A	20 Panels.	20019 81177 64157 86415 86117 95 91 16 7 16 7 16 7 16 7	00000000000000000000000000000000000000
RI	and	201024 20104 20104	7
	20 I		+002122222222
Z		- Urausholdu	H
LIC		र्वा वित्र व	
C	rs.	Com 0 0 8 8 8 8 10 11 12 11 12 11 11 11 11 11 11 11 11 11	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
SE	nbe		ords. 47.00 111 1110 110 111 111 111 111 111 111
	Members.	ns. 6 4 4 10 10 10 110 110 110 110 110 110 11	00010000000000000000000000000000000000
		Tens.  1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 113, 14, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 115, 116, 116	
		ਨ ਜਜਜ਼	
		Multiply by Sec.	Multiply by Tang.
		oos na mainimi	raoT vd vlatilith
			X

## MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN SINGLE INTERSECTION TRIANGULAR OR WARREN GIRDERS,

THROUGH OR DECK BRIDGES, WITH INTERMEDIATE SUSPENDERS OR POSTS (Figs. 4 and 5, Page 234.) WITH INCLINED END-POSTS AND EQUAL PANELS.

	0 1		ठर	_				_	_			_				_	_	_
els.	7											_					_	
an			<del>ين</del>	<u> </u>									_		_	_		
6 Panels. 4 Panels.	Ω,	-	0	-0														
s.					CS													
nel	~	15	10	9	೧೦													
Pa	,	اري اي	1.5	က်	73	3												
9				<u> </u>	7	7												
S.	0	<u>``</u>	၁	ಸರ	4		०											
ane	7	<u>25</u>	21	5	10	9	ಣ											
8 Panels.	Ο,	က က	2.5 21	1.5	0.5	0.5	-1.5	3.5										
					9	<del>ا</del>			<u>्</u>	_					-		_	_
ro Panels.				00	7	20	0	9	က									
Pa		4.04	က က	2	5	5	<u>-5</u>	rc.	<u>.</u>	rċ		_						_
10	H,	4	က်	લ્ય	1.5	Ċ	9	-1.5	न्	ကု								
·ŝ	0	1	10		00		9	2	4		03	П						
12 Panels.	7	99	55	45	98	82	21	15	10	9	ಣ	-						
P2		<u>و</u>	4.5	ည် ကို	30.5	13	20	ಸು	تن	ಸ	13	3						
12								0.5	T	-2.5	-3.5	4-						
s.	0	13	15	H	$\overline{}$		$\infty$	7	9	ಸ್ತ	4	က	<b>S</b>	-				
Panels.	7	y J	200	99	55	45			21		10		က					
4 P	0,	<u>c</u>	5.5			25.52	1.5	<u></u>	0.5	-1.5	20	-3.5	20	5.				
14										T					<u> </u>			
S.	0;	15			312	三	10	6.	00	~	9	<del>س</del>	4	<u>က</u>				
16 Panels.	7	1201	105		^		55	45			21	15	10	9	က	_		
5 P.		<u>.</u>	6.5	5.5	4.5	छ			٠.	73	10	ಸು	ಸು	تن	-5.5	73		
1(							35	7	0	-0.5	T		न	4-	5			
	0 ]	17	16	15	14	133	3	11	20	೦ಾ	00	7~	9	20	4	ಣ	CS.	-
18 Panels.	7	53	136	120 15	105	6	7812	99	35			288	21	15	10	9	က	-
Pá		3	7.5	6.51	<u>.</u>	20	ಬ	ಬ	20	क	<u>ت</u>	-1.5	5	ಸ		ಸು	ಸ್	ıÇ
18	170	0.00	,	9	$\mathcal{C}$	4		CS	<del>_</del> i	0	<del>Q</del>	T	-2.5	ကို	7	က်	9	1
	0	19	100	17	16	15	14	13	12	11	10	6	00	1	9	ಬ	4	c.
20 Panels.	~ 8	2	7	153 17	136 16	20	02	91	30	99	55	45	36	82	21	15	10	9
Pa	- 1	2	8.51	2	51	51	51	ಬಾ	20	20	20	10	ಬ			20	ಬ	70
20	D,	<u>.</u>	$\dot{\infty}$	~	9	r.	4.	က	2.5 7812	i	0	-0.5	-1.5	-2.5	-3.5	-4.5	-5.5	9
	'n		cs.		4		9		$\infty$		10							
ers.	Tens.		1		ŝ		20		è		9′ 1		11'12		13'14		15'16	
Members.		 		 ನ		10		1		<u>`</u>		1		13,		20		17,
Me	=					<u>۔</u> تر		4		à m		11				15/		
	ŭ	<u> </u>		<b>⇔</b>		4		9		00		10		12		14		16
	•3	98	λ;	q.	λĮc	Įii.	Įnī	u '	L2	рę	w	϶JV	IF	əτ	iilo	u	[	

# SINGLE INTERSECTION TRIANGULAR OR WARREN

### GIRDERS—Continued.

_	,		
	4 Panels.	9 22 4	
	4 P	1 1 2 2	
	6 Panels.	<u>~</u> 10 ∞ 0	1 8
	i	1+0 1.5.5 2.5.4 5.5.5	membe 155
	8 Panels.	~ rate 5	Depth of truss Length of pan
	8 Par	D+L 3.5.7 6. 152 8. 5. 153 16	= Length of inclined memb Depth of truss Tane. = Length of panel
	els.	201 100 100 100 100 100 100 100 100 100	Leng ang.=
	ro Panels.	D+1. 8.5. 10.5. 12.5.	Sec. = Length of inclined member Depth of truss Tang = Length of panel
	nels.	36 37 39 11 ~	
	12 Panels.	D+L 5.5 10. 13.5 16. 17.5 18.	
	nels.	251 252 254 254 254 254 254 255 255 255 255	
	14 Panels.	D+L 6.5 112. 16.5 20. 22.5 24.5	
	nels.	15 28 33 88 25 60 60 63 64 88 65 64 65 65 65 65 65 65 65 65 65 65 65 65 65	
	16 Panels.	D+L 7.5 14. 19.5 24. 27.5 30. 31.5	ive load,
	nels	882382481°	neral l
	18 Panels	D+L 6 17 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	over ge
	els.	~ 182224 82224 100	panel. oanel. ne load
	20 Pan	D+L 9.5 18.7 37.5 37.5 47.5 48.5 50.	o. of panels lead load per live load per l scess of engii for 1 panel.
	Memb's 20 Panels.	Chords.  1, 3/ 2, 4  3, 5/ 4, 6  4, 6  7/ 9/ 8, 10  9/ 11/	<ul> <li>n = No. of panels</li> <li>D = Dead load per panel.</li> <li>L = Live load per panel.</li> <li>E = Excess of engine load over general live load, for 1 panel.</li> </ul>
	•31	Chords, multiply by Tar	#UJH

Tang. = Length of panel Depth of truss

**田**| 2

 $l = \frac{L}{n}$ 

2.5|15|5|1.5|6|3

8.5[153[17] 7.5[120[15] 6.5[91[13] 5.5[66[11] 4.5[45[9] 3.5[28[7]

9.5|190|19|

## MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN DOUBLE INTERSECTION TRIANGULAR OR WARREN GIRDERS,

	o'ls.	- 7 4 63 L - 6 6 6 L - 7 4 63 L	
`	4 P'ls.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	lels.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Pan	$\begin{array}{c c} D & 1 \\ 1.5 & 9 \\ 1.5 & 4 \end{array}$ 0.5 1 0.5 1 1.1 load c 1.2 panel.	
	9	1	
	nels.	129 129 129 129 129 129 129 129 129 129	re:
	3 Pa	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sts 2
	ls.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The Strains in End-posts are
	ane	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Snd
<u>:</u>	I OI	000011000111 2018 00000000000000000000000000000000000	in E
234	ls.	2000 3000 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010 3010	ins
1ge	Pane	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tra
, P	12]	25	ne 5
3. 6	ls.	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ξ
(Fig	Pane	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<del>-</del> i
rô	14]	D 2 3 3 4 4 9 13 3 5 4 4 9 13 3 5 4 4 9 13 5 10 10 10 10 10 10 10 10 10 10 10 10 10	by
GE	16 Panels. 14 Panels. 12 Panels. 10 Panels. 8 Panels. 6 Panels.	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lied
BRIL	ane	l and the second	ltip
THROUGH OR DECK BRIDGES. (Fig. 6, Page 234.)	16 F	H 4 22 22 22 22 14 15 25 25 25 25 25 25 25 25 25 25 25 25 25	., multiplied by 1.
)EC		0 4 8 8 8 8 8 1 1 1 1 0 0 0 8 7 0 0 4 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, L,
R I	nels	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0 E	r8 Panels.	U 4 4 8 8 8 8 8 1 1 0 0 0 1 1 1 6 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1	For Inclined End-posts $1'1=0'1$
UG		2010019 4.5 99018 4.5 72516 3.5 6415 2.5 6415 2.5 6415 2.5 10 0 0.5 3614 2.5 3614 2.	ts 1
IRO	els.	2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000	bos.
Ξ	20 Panels.	7000000440000011	-bu
	20	Tens. 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	된 및
		0.000000000000000000000000000000000000	line
	s. Through.	Compr. Fens. 1 2 2 3 4 4 5 5 6 5 6 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Inc
	l'hro	Compr. 10 11 12 13 14 15 15 16 15 16 15 16 16 17 16 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	r'or
	MEMBERS.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	EMI	Compr. Tens. 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,	
	Deck.	Compr. 17.00 9.8 7.7 6.6 6.7 5.2 1.11.10 9.8 7.7 6.6 1.12.11.11.11.11.11.11.11.11.11.11.11.11	

			_	_		_		_	_	_	_	_			_		_			_	_			
	4 Panels.	D+L C	0.5 2		1.5 2	3										1	one.			anel	russ			1.5 3
	· s	6	4	10	9	$\infty$	9	0									Ω			JC D	of tu			ರ
	6 Panels.	D+L	-	1.5	က	ట చ	4	4.5						Minister dio gonnale ber Con	chargonals by Dec.	y rang.	verucal members by one.			Length of panel	Depth of truss			2.5 5
	ŝ	в	9	7	10	23	2	5	2	91				100	1011	5	ī			i				~
	8 Panels.	)+I	1.5	જ	4.5	ಬ	6.5	7	7.5	$\infty$				المريقة	y umgu chord	CHOTO.	verm			Tong -	, tan 8.			3.5   7
		0	$\overline{\infty}$	<u>_</u>	<b>च</b>	9	$\overline{x}$		0	<del>\</del>	9	25		- 1	33	,								6
	nels	-	_		_	<del>-</del>	_	<u>cv</u>	<u>८१</u>	<u>ज्य</u>	SV.			=	TAT					H.				10
	ro Panels.	D+1		25.55	9	6.5	6	9.5	3 11	11.5	15	19.5		•••						Length of inclined member	SS			8.5 17 7.5 15 6.5 13 5.5 11 4.5 9
	cls.	0	2	Ξ	3	<u>ಜ</u>	<u>₹</u>	8	8	<u>~~</u>	<u>ಹ</u>	8	30	36						ned	trus			Ξ
	Pan	D+L	2.5		7.5	~	1.5	•	14.5		16.5		17.5	~						ncli	Depth of truss			5.5
	12		CV.	Cra	2	œ	Ξ	22	14	15	16	17		130						of i	eptl		sts	220
	S.	0	13	133	33	24	300	33	36	40	017	45	42	48	42	49				gth	Á		od-	33
	ane	-1		3.5		9.5		14.5		18.5		21.5		23.5		24.5				Len			nd-	73
	18 Panels. 16 Panels. 14 Panels. 12 Panels.	HA	် (၁၁	က	6	6	14	14	180	80	21	21	233	33	24	24					Į		For Inclined End-posts:	9
	· °	0	14	15	98	88	36	39	44	48	20	55	54	09	99	63	56	64		1	3		nec	15
	ane	۲	3		10.5		70		70		10		rò		ಶ		က						ncli	ت
)	16 P	D+L e	က်	4	10.	1	16.5	17	21.5	33	25.5	98	28.5	53	30.5	31	31.5	35					r	1
		0	91	17	200	33	42	45	32	99	09	65	99	33	20	11	33	80	33	81			$F_0$	17
	anel			70	•••	70		70		ro Lo	_	73	_	20	-	<del>ن</del>	_	73						20
	8 P.	D+T	4	4.5	15	12.5	13	19.5	25	25.5	30	30.5	34	34.5	37	37.5	33	39.5	40	40.5				$\dot{\infty}$
		6	100	19	34	36	48	51	09	<del>7</del> 9	<u> </u>	75	28	84	84	91	88	96	06	66	06	00		19
	ane	1	ರ		70		ro Lo		ಬ		10		. ro		ಸ್ತ		70		<del>ان</del>		<u>ي</u>	=		5
	20 Panels.	D+T	4.5	ಬಾ	13.5	14	21.5	33	28.5	65	34.5	35	39.5	40	43.5	44	46.5	47	48.5	49	49.5	20		9.5   19
		om.	Н		C)		က		4		ಬ		9		<b>?~</b>		$\infty$		0		10			-
	.Through.	Bottom.	0		$\vdash$		<b>3</b> 5		က		4		ಬ		9		10		$\infty$		ე			0 1
	hrou			1,		ेंश		ŝ		4,		20		-0		-1		ò		6		0		
	RDS.	Top.		ò		7		ेंश		ග		4		2		· 9		1		ó		9'10'		
	CHORDS,	om.		-		<b>⊙</b> ≀		ಣ		4		ro		9		1-		$\infty$		೦೧		10		~
		Bottom.		0		Н		C5		50		팹		70		9		1		$\infty$		о С		0
	Deck.		7		ŝ		<u>ښ</u>		4,		50		·,		10		<u> </u>		6		, 0			
		Top.	`D		-		ĠΣ		33		177		ìo		· · · · · · · · · · · · · · · · · · ·		1		ó		9,10,			

### THE PASSAIC ROLLING MILL COMPANY'S STANDARD TURNTABLES.

The table is entirely center bearing, and rests on hardened steel discs, which offer very little resistance to turning, and at the same time are of sufficiently large diameter to give ample bearing surface to maintain them in good working order, and prevent abrasion by excessive pressure. The discs are six inches in diameter for the smaller tables, and eight inches for the larger sizes. The tables are suspended from the saddle and center pin by two bolts of re-rolled iron. Two bolts are used, in preference to four, to avoid the uneven distribution of the load produced by the tightening of the bolts, which is liable to occur when more than two are used. The vertical adjustment of the table is easily made with the suspending bolts, and without the use of packing plates or other devices. The flanges are made of six inch angle irons, extending the full length of the table without splices, and re-enforced at the center with cover plates. The sections of the flanges are proportioned with due regard to the effect of the reversal of strains at any point of either flange due to the shifting position of the locomotive, and the stresses are kept low to avoid excessive deflection at the ends of the table when loaded. The girders are connected to each other with rigid angle iron bracing effectively secured to the flanges, and with six transverse frames, also of angle iron. The center and saddle eastings and the end bearing wheels are open hearth steel eastings. No cast iron is used in the construction.

The 55 ft., 60 ft. and 65 ft. turntables are made in five stan-

dard sizes.

Pattern A, for turning 75 ton locomotives.

" B, " " 90 " "
" C, " " 106½ " "
" D, " " 124 " "
" E, " " 142 "

Where shipment can be made by rail, the tables are loaded on cars, complete, ready to set in the pit. Dimensions for building the pit, and instructions for setting the table accompany each contract.

When the pits are already built the tables can be made to fit them at a slight additional cost.

### DIMENSIONS OF PASSAIC STANDARD TURNTABLES.

Diameter of Pit	40′ 0′′	45′0′′	50′ 0′′	55′ 0′′	60'0''	65′ 0′′
Length of Girder, out to out	39′ 4′′	44' 4''	49'6''	54'6''	59'6''	64' 6"
Diameter of Circular Tracks, center to center of Rail	36′ 0′′	41′ 0′′	46′ 0′′	51′0′′	56′ 0′′	61′ 0′′
Depth from top of Rail on Table to top of Center Stone	5'0"	5'0''	5'6"	5'6''	5'6"	5'9"
Depth from top of Rail on Table to top of Rail of Circular Track	3'4''	3′ 4′′	3′10′′	3′10′′	3′10′′	3′ 10′′
Depth from top of Rail on Table to top of Rail of Circular Track, for Special Turn Table with shallow Pit.	2'0''	2′0′′	2'6''	2'6''	2'6"	2'6"



# SPECIFICATIONS FOR STRUCTURAL STEEL.

Condensed from the Standard Specifications of the Association of American Steel Manufacturers.

### PROCESS OF MANUFACTURE.

(1). Steel shall be made by either the Open Hearth or Bessemer process.

### TEST PIECES.

(2). All tests and inspections shall be made at place of manufacture prior to shipment.

(3). The tensile strength, limit of elasticity and ductility shall be determined from a standard test piece, planed or turned parallel throughout its entire length, cut from the finished material. The clongation shall be measured on an original length of 8 inches, except when the thickness of the finished material is  $\frac{6}{16}$  inch or less, in which case the elongation shall be measured in a length equal to sixteen times the thickness; and except in rounds of  $\frac{6}{8}$  inch or less in diameter, in which case the elongation shall be measured in a length equal to eight times the diameter of section tested. Two test pieces shall be taken from each

(4). Every finished piece of steel shall be stamped with the heat number. Steel for pins shall have the heat numbers stamped on the ends. Rivet and lacing steel, and small pieces for tie plates and stiffeners, may be shipped in bundles securely wired together with the heat number on a metal tag attached.

heat of finished material, one for tension and one for bending.

### FINISH.

(5). Finished bars must be free from injurious seams, flaws or cracks, and have a workmanlike finish.

### CHEMICAL PROPERTIES.

(6). Steel for buildings, train sheds, highway bridges and similar structures shall not contain more than 0.10 per cent. of phosphorus.

(7). Steel for railway bridges shall not contain more than 0.08

per cent. of phosphorus.

### PHYSICAL PROPERTIES.

(8). Structural steel shall be of three grades: Rivet Steel, Soft Steel, and Medium Steel.

### RIVET STEEL.

(9). Rivet steel shall have an ultimate strength of 48,000 to 58,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 26 per cent., and shall bend, 180 degrees flat on itself, without fracture on the outside of the bent portion.

### SOFT STEEL.

(10). Soft steel shall have an ultimate strength of 52,000 to 62,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 25 per cent., and shall bend 180 degrees, flat on itself, without fracture on the outside of the bent portion.

### MEDIUM STEEL.

(II). Medium steel shall have an ultimate strength of 60,000 to 70,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 22 per cent., and shall bend 180 degrees, around a curve having a diameter equal to the thickness of the piece tested, without fracture on the outside of the bent portion.

### PIN STEEL.

(12). Pins made from either of the above mentioned grades of steel shall, on specimen test pieces cut at a depth of one inch from the surface of finished material, fill the physical requirements of the grade of steel from which they are rolled for ultimate strength, elastic limit and bending, but the required percentage of elongation shall be decreased 5 per cent.

### EYE-BAR STEEL.

(13). Eye-bar material 1½ inches and less in thickness, made of either of the above mentioned grades of steel, shall, on test pieces cut from finished material, fill the requirements of the grade of steel from which it is rolled. For thicknesses greater than 1½ inches, there will be allowed a reduction in percentage of elongation of one per cent. for each ⅓ of an inch increase in thickness, to a minimum of 20 per cent. for medium steel and 22 per cent. for soft steel.

### FULL SIZE TEST OF STEEL EYE-BARS.

(14). Full size tests of steel eye-bars shall be required to show not less than 10 per cent. elongation in the body of the bar, and a tensile strength not more than 5,000 pounds below the minimum tensile strength required in specimen tests of the grade of steel from which the bars are rolled. The bars will be required to break in the body; should a bar break in the head, but develop 10 per cent. elongation and the ultimate strength specified, it shall not be cause for rejection, provided not more than one-third of the total number of bars tested break in the head.

### VARIATION IN WEIGHT.

(15). A variation in cross-section or weight of more than  $2\frac{1}{2}$  per cent. from that specified will be sufficient cause for rejection, except in the case of sheared plates.

When sheared plates are ordered by weight, the permissible variation shall not be more than  $2\frac{1}{2}$  per cent. from that specified, except for plates  $\frac{1}{4}$  to  $\frac{1}{16}$  thick (10.2 to 12.75 lbs. per square foot), which, when ordered to weight, shall not average a variation greater than 5 per cent. above or below the theoretical weight for plates over 75 wide.

When sheared plates are ordered to gauge, the overweight shall not exceed the percentages given in the following table:—

# PERCENTAGES OF ALLOWABLE OVERWEIGHTS FOR SHEARED PLATES WHEN ORDERED TO GAUGE.

Thickness of Plate.		Width of Plate.	
	Up to 75 inches.	75 to 100 inches.	Over 100 inches.
½ inch.	10	14	18
<u>5</u> //	8	12	16
3/8 //	7	10	13
716 "	6	8	10
1/2 //	5	7	9
36 "	$4\frac{1}{2}$	$6\frac{1}{2}$	8 <del>1</del>
5/8 //	4	6	8
Over $\frac{5}{8}$ inch.	$3\frac{1}{2}$	5	$6\frac{1}{2}$

### CORRUGATED IRON.

Corrugated iron is largely used for roofing and siding of buildings and can be applied directly upon steel purlins or studding by means of clips of hoop iron, placed not more than 12" apart, which encircle the purlin or stud. The projecting edges at the gables and eaves must be secured to prevent the sheets being loosened or folded up by the wind.

The usual dimensions of corrugated iron are given in the subjoined table. The  $2\frac{1}{2}$  inch corrugation is the one generally employed for roofing and siding, and the regular lengths

of sheets are 6, 7, 8, 9 and 10 ft.

## DIMENSIONS OF SHEETS AND CORRUGATIONS.

Width of Corrugation.	Depth of Cor- rugation.	No. of Corruga- tions to the Sheet.	Cov. width after lapping one Corrugation.	Width of Sheet after Corrugation.	Length of longest Sheets.
2½ inch. 1¼ " ¾ "	5 inch.	$ \begin{array}{c} 10 \\ 19\frac{1}{2} \\ 34\frac{1}{2} \end{array} $	24 inch. 24 " 25 "	26 inch. 26 " 26 "	10 ft. 8 ft. 8 ft.

Roofing is measured by the square, equal to 100 sq. ft. of finished roofing in place. The corrugated sheets are usually laid with one corrugation lap on the sides and an end lap of 6" for roofing and 2" for siding.

# NUMBER OF SQUARE FEET OF 2½" CORRUGATED IRON REQUIRED TO LAY ONE SQUARE.

Side Lap, One Corrugation.

Length of			Length of	End Lap.		
Sheet, Feet.	1 inch.	2 inch.	3 inch.	4 inch.	5 inch.	6 inch.
5 6 7 8 9 10	110 110 110 110 109 109 108	112 111 110 110 110 110 109	114 113 112 112 112 112 110	116 115 114 113 113 111	118 117 115 114 114 112	120 118 117 115 115 113

### CORRUGATED IRON (Continued).

The maximum spans for roofing and siding are as follows:

No. 16. No. 18. No. 20. No. 22. No. 24. No. 26. No. 28. Roofing, 5' 9'' 5' 0'' 4' 3'' 4' 0'' 3' 6'' 3' 0'' 2' 9'' Siding, 7' 0'' 6' 3'' 5' 3'' 4' 9'' 4' 3'' 3' 9'' 3' 3''

and if used on greater spans the excessive deflection is liable to impair the tightness of the joints.

Numbers 20 and 22 are the gauges most in use for roofs, and number 24 for siding. The sheets may be either painted

or galvanized.

The United States standard gauge, adopted by Act of Congress in 1893, is in general use by manufacturers of sheet iron. The following table gives the thickness and weight of corrugated iron in accordance with United States standard gauge.

No. by United States Gauge.	Thickness, inches.	Weight per Square Foot, Flat, lbs.	ight per t., Corru- ed, lbs.	21/211/10	r one C	Square lowing orrugat gths of:	e of 100 6" lap i	Square n lengt vidth of	Feet, h, and sheet,	Galvanized. Wgt. per Sq. Ft., Corrugated.
Unite	Thi	Weight Square Flat, 1	Weight Sq. Ft., C gated, ll	5′	6′	7′	8′	9′	10′	Galy Wgt. p Con
16 18 20 22 24	.0625 .05 .0375 .0313 .025	2.50 2.00 1.50 1.25 1.00	2.75 2.20 1.65 1.38 1.11	331 264 198 166 134	325 260 195 163 131	320 256 193 161 130	318 254 190 159 128	315 252 189 158 127	311 249 187 156 126	2.91 2.36 1.82 1.54 1.27
26 28	.0188	.75 .63	.84 .69	101 83	100 82	99 81	98 80	96 79	95 78	.99

## TRANSVERSE STRENGTH OF CORRUGATED IRON.

The transverse strength of corrugated iron may be calculated in the following manner:

l = unsupported length of sheet, in inches.

t = thickness of sheet, in inches.

b = width of sheet, in inches.

d = depth of corrugation, in inches.

w = safe uniformly distributed load, in pounds.

Then,  $w = \frac{25,000 \text{ b t d}}{l}$ 

### RIVETS AND PINS.

In proportioning riveted work the friction is neglected between the parts connected as it is an uncertain element. The rivets must resist the whole strain which is to be transmitted from one part to the other, and they must be of sufficient size and number to present ample resistance to shearing, and afford sufficient bearing area so as not to cause a crushing of the metal at the rivet holes. It is, therefore, always necessary to calculate rivet connections for shear as well as for bearing. The usual strains, lbs. per square inch, allowable on riveted work are as follows:—

Rivets.	Shearing.	Bearing.
Iron rivets, railroad bridges,	6,000	12,000
Iron rivets, highway bridges and buildings,	7,500	15,000
Steel rivets, railroad bridges,	7,500	15,000
Steel rivets, highway bridges and buildings,	9,000	18,000

The following tables give the shearing and bearing values of rivets, of different diameters, for the above strains. Single shear occurs when a single shearing across the body of the rivet suffices to produce separation of the parts connected; as, for instance, when a thick plate is connected with another single thick plate by means of a rivet, the connection can fail only by a single shearing of the body of the rivet. If, however, the plates are thin they may not offer sufficient bearing against the rivet to prevent rupture by the rivet bodily crushing the plates; the latter condition is determined by the bearing value of the rivet upon the plates. If a \( \frac{3}{4}'' \) diameter rivet is used, and the plates are only \( \frac{1}{4}'' \) thick, by reference to the tables, it will be found that the bearing value of the rivet on a \( \frac{4}{4}'' \) plate is less than its value in single shear, and the bearing value of the rivet determines the strength of the connection.

Pins are subject to strains by shearing, bearing and bending, but their resistance to the latter two, in almost every case, determines the size of the pin to be used. The usual allowable strains, lbs. per square inch, on pins are as follows:

Pins.	Shearing.	Bearing.	Bending.
Iron pins, railroad bridges,	7,500	12,000	15,000
Iron pins, highway bridges and			
buildings,	9,000	15,000	18,000
Steel pins, railroad bridges,	9,000	15,000	18,000
Steel pins, highway bridges and			
buildings,	11,250	18,000	22,500

The following tables give the shearing, bearing and bending values of pins, of different diameters, for the above strains.

# SHEARING AND BEARING VALUES AND MAXIMUM BENDING MOMENTS OF PINS.

á

			ĺ		2	-				
Diameter	Area	MAXIMUM	MAXIMUM BENDING MOMENTS.	JOMENTS.	Be FOR I" T	BEARING VALUES FOR I" THICKNESS OF PLATE.	ES F PLATE.	SH	SHEARING VALUES.	UES.
Pin, Inches.	Pin, Sq. Ins.	S=15,000 lbs. per ain.	S=15,000 S=18,000 S=22,500 lbs. per $\square$ in. lbs. per $\square$ in.	S = 22,500 lbs. per□in.	At 12,000 lbs. per   in.	At 12,000 At 15,000 At 18,000 lbs. per lin. lbs. per lin.		At 7,500 lbs. per \( \text{in.} \)	At 7,500 At 9,000 At 11,250 lbs. per uin. lbs. per uin.	At 11,250 lbs. per [in.
$\frac{11_{6}^{2}}{11_{6}^{2}}$	1.62	4,370	5,240	6,550	17,200	21,600	25,900	12,150	14,600	18,200
	2.24	7,070	8,480	10,610	20,200	25,300	30,400	16,800	20,200	25,200
	2.95	10,700	12,840	16,050	23,200	29,100	34,900	22,100	26,550	33,200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.76	15,400	18,480	23,110	26,200	32,800	39,400	28,200	33,800	42,300
	4.67	21,310	25,580	31,970	29,200	36,600	43,900	35,000	42,000	52,500
	5.67	28,570	34,280	42,850	32,200	40,300	48,400	42,500	51,000	63,800
	6.78	37,310	44,770	55,960	35,200	44,100	52,900	50,850	61,000	76,300
316	7.98	47,670	57,200	71,500	38,200	47,800	57,400	59,850	71,800	89,800
316	9.28	59,790	71,750	89,680	41,200	51,600	61,900	69,600	83,500	104,400
316	10.68	73,810	88,570	110,710	44,200	55,300	66,400	80,100	96,100	120,150
316	12.18	89,860	107,830	134,790	47,200	59,100	70,900	91,350	109,600	137,000
44 45 53 8.85 8.85 8.85 8.85 8.85 8.85 8.85	15.03	123,300	147,960	185,000	52,500	65,600	78,750	112,700	135,300	169,100
	16.80	145,700	174,800	218,500	55,500	69,400	83,300	126,000	151,200	189,000
	18.66	170,600	204,700	255,900	58,500	73,100	87,750	140,000	167,900	209,900
	22.69	228,700	274,400	343,000	64,500	80,600	96,750	170,150	204,200	255,200

# SHEARING AND BEARING VALUES AND MAXIMUM BENDING MOMENTS OF PINS (continued).

_					1	
	JES.	At 11,250 lbs. per 🗆 in.	280,000 305,000 318,000	345,000 373,000 403,000 433,000	497,000 568,000 638,000 716,000	797,000 884,000 1,069,000 1,272,000
	SHEARING VALUES	At 9,000 lbs. per lin.	224,000 244,000 254,000	276,000 299,000 322,000 346,000	398,000 452,000 511,000 573,000	638,000 707,000 855,000 1,018,000
	SHE	At 7,500 At 9,000 At 11,250 lbs. per ain. lbs. per ain.	187,000 203,000 212,000	230,000 249,000 268,000 289,000	331,000 377,000 426,000 477,000	532,000 589,000 712,000 848,000
	ES PLATE.		101,250 105,750 108,000	112,500 117,000 121,500 126,000	135,000 144,000 153,000 162,000	171,000 180,000 198,000 216,000
	BEARING VALUES FOR I" THICKNESS OF PLATE.	At 12,000 At 15,000 At 18,000 lbs. per□in. lbs. per□in.	84,400 88,100 90,000	93,800 97,500 101,300 105,000	112,500 120,000 127,500 135,000	142,500 150,000 165,000 180,000
	BE. FOR I" T	At 12,000 lbs. per \( \text{in.} \)	67,500 70,500 72,000	75,000 78,000 81,000 84,000	90,000 96,000 102,000 108,000	114,000 120,000 132,000 144,000
	OMENTS.	$S = 22,500$ lbs. per $\square$ in.	393,100 447,900 477,100	539,300 606,600 679,400 757,700	931,900 1,131,000 1,356,600 1,610,300	1,893,900 2,208,900 2,940,100 3,817,000
	Maximum Bending Moments.	S= 18,000 lbs. per□in.	314,500 358,300 381,700	431,400 485,300 543,500 606,100	745,500 904,800 1,085,200 1,288,200	1,515,100 1,767,100 2,352,100 3,053,600
	Maximum	S=15,000 S=18,000 S=22,500 lbs. per□in. lbs. per□in.	262,100 298,600 318,100	359,500 404,400 452,900 505,100	621,300 754,000 904,400 1,073,500	1,262,600 1,472,600 1,960,100 2,544,700
	Area	Pin, Sq. Ins.	24.85 27.11 28.27	30.68 33.18 35.79 38.48	44.18 50.27 56.75 63.62	70.88 78.54 95.03 113.10
	Diameter	or Pin, Inches.	25 Sign	4 4 4 7	77 72 88 82 93 9	$\frac{9_{2}^{1}}{1}$
	Di	Н	57.	64	2 8	6 11

# SHEARING AND BEARING VALUE OF RIVETS.

es.	ec -4-	0006	es.	eo 4₁	11250
ate, in Inch	11	7220 8250	ate, in Inch	11	9020 10310
lesses of Pla	තුක	6560 7500	lesses of Pk	ta]00	8200 9380
rent Thickr	9 1 8	5060 5910 6750	rent Thickn	$\frac{9}{1}$	6330 7380 8440
In. for Diffe	Hos	3720 4500 5250 6000	n. for Diffe	<b>⊢</b>  23	5630 6560 7500
s. per Sq. 1	$\frac{7}{16}$	3250 3940 4590 5250	s. per Sq. I	$\frac{7}{16}$	4100 4920 5740 6560
at 12,000 ll	භා්ග	2250 2790 3370 3940 4500	at 15,000 lb	හ න	2810 3520 4220 4920 5620
Bearing Value at 12,000 lbs. per Sq. In. for Different Thicknesses of Plate, in Inches.	16	1880 2320 2810 3280 3750	Bearing Value at 15,000 lbs. per Sq. In. for Different Thicknesses of Plate, in Inches.	1 6	2340 2930 3520 4100 4690
Be	14	1120 1500 1860 2250 2630 3000	Be	1 4	1410 1880 2340 2810 3280 3750
Single Shear at	o, oco 10s. per Sq. In.	660 1180 1840 2650 3610 4710	Single Shear at	7,500 ms. per Sq. In.	830 1470 2300 3310 4510 5890
Area	Rivet, Sq. In.	.110 .196 .307 .442 .601	Area	Rivet, Sq. In.	.110 .196 .307 .442 .601
Diameter	Rivet, Inches.	ω¦πο rc πο r- πο  ση κυ 44 <del>1 </del>	Diameter	Rivet, Inches.	ω∞ re¦zo r- zo  z≠ cz 44 <del>1 </del>

# SHEARING AND BEARING VALUE OF RIVETS (continued).

es.	<b>छ </b> 4	13500	es.	&[4	15000
ate, in Inch	$\frac{1}{1}\frac{1}{6}$	10830 12370	ate, in Inch	$\frac{11}{16}$	12030 13750
resses of Pla	ia[œ	9840 11250	resses of Pl	rejæ	10940 12500
rent Thick	9 1 9	7590 8860 10120	rent Thickr	1 6	8440 9840 11250
In. for Diffe	<b>⊣</b>  23	5580 6750 7870 9000	In. for Diffe	<b>⊢</b>  03	7500 8750 10000
os. per Sq.	$\frac{7}{16}$	4870 5910 6880 7870	s. per Sq. ]	$\frac{7}{16}$	5470 6560 7660 8750
at 18,000 lk	ಣ] <b>ಯ</b>	3370 4180 5050 5910 6750	at 20,000 lk	m]æ	3750 4690 5630 6570 7500
Bearing Value at 18,000 lbs. per Sq. In. for Different Thicknesses of Plate, in Inches.	$\frac{5}{16}$	2820 3480 4210 4920 5620	Bearing Value at 20,000 lbs. per Sq. In. for Different Thicknesses of Plate, in Inches.	5 1 6	3130 3910 4690 5470 6250
Be	1 4	1680 2250 2790 3370 3940 4500	Be	14	1880 2500 3130 3750 4380 5000
Single Shear at	9,000 lbs. per Sq. In.	990 1770 2760 3970 5410 7060	Single Shear at	per Sq. In.	1100 1960 3070 4420 6010 7850
Area	Rivet, Sq. In.	.110 .196 .307 .442 .601	Area	Rivet, Sq. In.	.110 .196 .307 .442 .601
Diameter	Rivet, Inches.	ಯ್ಯ ಸ್ಪರ್ಜ ಆಸ -ನಿಂತಿ ದನ್ನಡ ಕಿನ	Diameter of	Rivet, Inches.	ων π¦α ⊬α -¦εν εθ4 <u>-</u> -

# WEIGHT OF RIVETS, AND ROUND-HEADED BOLTS WITHOUT NUTS, PER 100.

Lengths from under head.

Length, Inches.	$\frac{3}{8}''$ Dia.	$\frac{1}{2}''$ Dia.	$\frac{5}{8}''$ Dia.	$\frac{3}{4}''$ Dia.	7'' Bia.	1'' Dia.	1½" Dia.
$\begin{array}{c c} 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1\frac{3}{4} \\ 2 \end{array}$	5.4 6.2 6.9 7.7	12.6 13.9 15.3 16.6	21.5 23.7 25.8 27.9	28.7 31.8 34.9 37.9	43.1 47.3 51.4 55.6	65.3 70.7 76.2 81.6	123. 133. 142. 150.
$\begin{array}{c} 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \end{array}$	8.5 9.2 10.0 10.8	18.0 19.4 20.7 22.1	30.0 32.2 34.3 36.4	41.0 44.1 47.1 50.2	59.8 63.0 68.1 72.3	87.1 92.5 98.0 103.	159. 167. 176. 184.
3 ¹ / ₄ 3 ¹ / ₂ 3 ² / ₄ 4	11.5 12.3 13.1 13.8	23.5 24.8 26.2 27.5	38.6 40.7 42.8 45.0	53.3 56.4 59.4 62.5	76.5 80.7 84.8 89.0	109. 114. 120. 125.	193. 201. 210. 218.
4½ 4½ 4¾ 5		28.9 30.3 31.6 33.0	47.1 49.2 51.4 53.5	65.6 68.6 71.7 74.8	93.2 97.4 102. 106.	131. 136. 142. 147.	227. 236. 244. 253.
5½ 5½ 5¾ 6			55.6 57.7 59.9 62.0	77.8 80.9 84.0 87.0	110. 114. 118. 122.	153. 158. 163. 169.	261. 270. 278. 287.
$egin{array}{c} 6rac{1}{2} \\ 7 \\ 7rac{1}{2} \\ 8 \\ \end{array}$				93.2 99.3 106. 112.	131. 139. 147. 156.	180. 191. 202. 213.	304. 321. 338. 355.
100 Heads.	1.8	5.7	10.9	13.4	22.2	38.0	82.0

# LENGTH OF RIVET SHANK REQUIRED TO FORM ONE RIVET HEAD.

All dimensions in inches.

		But	ton H	ead.			Coun	tersun	k Hea	d.
Grip.		Diame	eter of	Rivet			Diam	eter of	Rive	t.
	$\frac{1}{2}$	<u>5</u>	34	7/8	1	1/2	<u>5</u> 8	34	7/8	1
$\begin{array}{c} \frac{1}{2} \text{ to } 1\frac{3}{8} \\ 1\frac{1}{2} \text{ to } 2\frac{7}{8} \\ 3 \text{ to } 4\frac{3}{8} \\ 4\frac{1}{2} \text{ to } 5\frac{1}{2} \\ \end{array}$	$\begin{array}{c} 1 \\ 1 \frac{1}{8} \\ 1 \frac{1}{4} \\ 1 \frac{3}{8} \end{array}$	$1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$	13812588 12588 134	1½ 1½ 1½ 1¾ 1¾ 1%	$egin{array}{c} 1_{8}^{5} \\ 1_{3}^{4} \\ 1_{8}^{7} \\ 2 \\ \end{array}$	5 8 5 8 3 4	3/4 3/4 7/8	3 7 7 8	7 × 7 8 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

### WEIGHT OF 100 BOLTS WITH SQUARE HEADS AND NUTS.

(Hoopes and Townsend's List.)

Length under head			D	IAMET	CER OI	F BOLT	`S.		
to point.	1 in.	$\frac{5}{10}$ in.	3 in.	$\frac{7}{16}$ in.	$\frac{1}{2}$ in.	$\frac{5}{8}$ in.	3 in.	$\frac{7}{8}$ in.	1 in.
$\begin{array}{c} 1_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 1_{\frac{1}{12}}^{\frac{1}{12}} \\ 2_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 2_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 3_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 3_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 3_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 5_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 7_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}} \\ 9_{\frac{1}{12}\frac{1}{12}\frac{1}{12}} \\ 10_{\frac{1}{12}\frac{1}{12}}^{\frac{1}{12}\frac{1}{12}\frac{1}{12}} \\ 10_{\frac{1}{12}\frac{1}{12}\frac{1}{12}} \\ 10_{\frac{1}{12}\frac{1}{12}\frac{1}{12}} \\ 10_{\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}} \\ 10_{\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}\frac{1}{12}$	lbs. 4.0 4.4 4.8 5.2 5.5 5.8 6.3 7.0 7.8 8.5 9.3 10.0 10.8	lbs. 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0 13.0 14.0 15.0 16.0	lbs. 10.5 11.3 12.0 12.8 13.5 14.3 15.0 16.5 13.0 19.5 24.0 22.5 24.0 25.5 30.0	lbs. 15.2 16.3 17.4 18.5 19.6 20.7 21.8 24.0 26.2 28.4 30.6 32.8 35.0 37.2 39.4 41.6 43.8 46.0 48.2 50.4 52.6	lbs. 22.5 23.8 25.2 26.5 27.8 29.1 30.5 33.1 35.8 38.4 41.7 46.4 49.0 51.7 54.3 59.6 64.9 70.2 75.5 80.8	lbs. 39.5 41.6 43.8 45.8 48.0 50.1 52.3 56.5 60.8 65.0 69.3 73.5 77.8 82.0 90.5 94.8 103.3 111.8 120.3 128.8	lbs. 63.0 66.0 69.0 72.0 75.0 78.0 81.0 87.0 93.1 199.1 117.3 123.4 135.0 141.5 153.6 165.7 177.8 189.9	lbs 109 0 113.3 117.5 121.8 126.0 184.3 142.5 151.0 176.6 168.0 176.6 185.0 193.7 202.0 210.7 227.8 261.9 278.9	lbs 163 169 174 180 185 196 207 218 229 240 251 262 273 284 295 317 339 360 382
Per in. addi- tional.	1.4	2.1	3.1	4.2	5.5	8.5	12.3	16.7	21.8

### WEIGHTS OF NUTS AND BOLT-HEADS, IN POUNDS.

For Calculating the Weight of Longer Bolts.

Diameter of Bolt in Inches.		1/4	<b>3</b> 8	1/2	58	34	78
Weight of Hexagon Nut and Head		.017	.057	.128	.267	.43	.73
Head		.021	.069	.164	.320	.55	.88
Diameter of Bolt in Inches.	1	$1\frac{1}{4}$	$1\frac{1}{2}$	13/4	2	$2\frac{1}{2}$	3
Weight of Hexagon Nut and Head Weight of Square Nut and	1.10	2.14	3.78	5.6	8.75	17	28.8
Head	1.31	2.56	4.42	7.0	10.5	21	36.4

### BOLTS AND NUTS.

BOLTS.	NUTS.
U. S. Standard Screw Threads.	Manufacturers Sta

	U. S. St	andard Sc	rew Threa	ds.	Manufacturers Standard.			
Diam. of Bolt, Ins.	No. of Threads per Inch.	Diam. at Root of Thread, Inches.	Area of Body of Bolt, Sq. Ins.	Area at Root of Thread, Sq. Ins.	Short Diam., Ins.	Long Diam., Ins.	Side of Square, Ins.	Diag- onal, Ins.
16 16 38 76	20 18 16 14	.185 .240 .294 .344	.049 .077 .110 .150	.027 .045 .068 .093	1215/x 3/4 1/x	0.58 $0.72$ $0.87$ $1.01$	<u> </u>	$\begin{bmatrix} 0.71 \\ 0.88 \\ 1.06 \\ 1.24 \end{bmatrix}$
129 165 834	13 12 11 10	.400 .454 .507 .620	.196 .249 .307 .442	.126 .162 .201 .302	$1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{3}{8}$	1.15 1.30 1.44 1.59	$\begin{array}{c} 1 \\ 1\frac{1}{8} \\ 1\frac{1}{4} \\ 1\frac{1}{2} \end{array}$	1.41 1.59 1.77 2.12
$egin{array}{c} rac{7}{8} \ 1 \ 1rac{1}{8} \ 1rac{1}{4} \end{array}$	9 8 7 7	.731 .837 .940 1.06	.601 .785 .994 1.23	.419 .550 .694 .890	$1\frac{5}{8}$ $1\frac{3}{4}$ $2$ $2\frac{1}{4}$	1.88 2.02 2.31 2.60	$egin{array}{c} 1^{rac{3}{4}} \ 2 \ 2^{rac{1}{4}} \ 2^{rac{1}{2}} \end{array}$	2.47 2.83 3.18 3.54
138 125 158 134	$ \begin{array}{c} 6 \\ 6 \\ 5\frac{1}{2} \\ 5 \end{array} $	1.16 1.28 1.39 1.49	1.48 1.77 2.07 2.40	1.06 1.29 1.51 1.74	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \\ 3\frac{1}{4} \end{array} $	2.89 3.18 3.46 3.75	$2\frac{3}{4}$ $3\frac{1}{4}$ $3\frac{1}{2}$	3.89 4.24 4.60 4.95
$egin{array}{c} 1_8^7 \ 2 \ 2_{14}^1 \ 2_{2}^1 \ \end{array}$	$\begin{array}{c} 5\\ 4\frac{1}{2}\\ 4\frac{1}{2}\\ 4\end{array}$	1.61 1.71 1.96 2.17	2.76 3.14 3.98 4.91	2.05 2.30 3.02 3.71	$ \begin{array}{c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{3}{4} \\ 4\frac{1}{4} \end{array} $	4.04 4.04 4.33 4.91	$3\frac{3}{4}$ $4$ $4\frac{1}{4}$ $4\frac{1}{2}$	5.30 5.66 6.01 6.36
$\begin{array}{c} 2^{3}_{4} \\ 3 \\ 3^{\frac{1}{4}}_{4} \\ 3^{\frac{1}{2}}_{2} \end{array}$	$\begin{array}{c} 4 \\ 3\frac{1}{2} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \end{array}$	2.42 2.63 2.88 3.10	5.94 7.07 8.30 9.62	4.62 5.43 6.51 7.55	$4\frac{1}{2}$ $4\frac{3}{4}$ $5$ $5\frac{1}{4}$	5.20 5.48 5.77 6.06	45 5 5 53 53	6.72 7.07 7.78 8.13
$3\frac{3}{4}$ $4$ $4\frac{1}{4}$ $4\frac{1}{2}$	$\frac{3}{2^{7_8}}$	3.32 3.57 3.80 4.03	11.04 12.57 14.19 15.90	8.64 10.00 11.33 12.74	$egin{array}{c} 6 \\ 6 rac{1}{2} \\ 7 \\ 7 rac{1}{2} \\ \end{array}$	6.93 7.51 8.09 8.58	$egin{array}{c} 6rac{1}{2} \ 7 \ 7rac{1}{2} \ 8 \ \end{array}$	9.19 9.90 10.61 11.31
4 ³ / ₄ 5	$2\frac{5}{8}$ $2\frac{1}{2}$	4.25 4.48	17.72 19.63	14.23 15.76	7 ³ / ₄ 8	8.95 9.24		$11.67 \\ 12.02$

# MANUFACTURERS STANDARD, SQUARE AND HEXAGON HOT-PRESSED NUTS.

NUMBER OF EACH SIZE IN 100 LBS.

Size of Bolt, Inches.	Number of Square.	Number of Hexagon.	Size of Bolt, Inches.	Number of Square.	Number of Hexagon.
14 55 16 38 710 12 9 16 58 34 78 1	6,800 3,480 2,050 1,290 850 600 440 251 159 106	8,000 4,170 2,410 1,460 1,020 710 520 370 226 176	13x 13x 14x 10 14x 12x 14x 14x 14x 14x 14x 14x 14x 14x 14x 14	$\begin{array}{c}$	56.0 42.0 33.4 26.7 21.5 22.4 17.7 12.3 10.2 8.7
$1\frac{1}{8}$ $1\frac{1}{4}$	73 54	104 75	$\frac{3\frac{1}{4}}{3\frac{1}{2}}$	4.7 4.0	$\begin{array}{c} 7.5 \\ 6.3 \end{array}$

### STANDARD SIZES OF WASHERS.

NUMBER IN 100 LBS.

Size of Bolt, Inches.	Diameter of Washer, Inches.	Size of Hole, Inches.	Thickness, Wire Gauge.	Average Number in 100 lbs.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1435 1425 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 16 14 14 12 12 10 10 9 9 9 9 9 8 8 8 8 8	13,845 11,220 6,573 4,261 2,683 2,249 1,315 1,013 858 617 516 403 320 278 247 224 200 180 110 91					
·X									

### BUCKLE PLATES.

Buckle plates are used for concrete, asphaltor stone paved floors of buildings and highway bridges. The width of the plates varies from 3 ft. to 5 ft., and the thickness from  $\frac{1}{4}$ " to  $\frac{3}{8}$ ". The thickness should never be less than  $\frac{1}{4}$ ", while  $\frac{5}{16}$ " is the usual thickness for

bridge floors.

Buckle plates are made in long lengths having several buckles or domes in each plate. They are usually supported along the two longitudinal edges and at the extreme ends, and should be bolted or riveted to the supports, with  $\S''$  or  $\S''$  bolts or rivets spaced not over  $\S''$  centers. If the ends of the buckle plates do not rest on supports, they should be spliced with  $\P$  iron or a pair of angles riveted together.

The approximate total safe uniformly distributed loads are given in the following table for different thicknesses and sizes of buckle plates, well bolted down, calculated from the formula,

W = 4 Sdt

where W = total safe uniform load, in lbs., on a single square.

S = allowable unit strain, in lbs., per square inch.

d = depth of buckle, inches.t = thickness of plate, inches.

## TOTAL SAFE UNIFORMLY DISTRIBUTED LOADS, IN LBS., ON BUCKLE PLATES.

Size of Plate.	30" Square.	36" Square.	42" Square.	48" Square.	54" Square.	60'' Square.			
Thickness, in Inches.		2 Inches, Depth of Buckle.							
1 156 3 8	11,000 16,400 22,200	9,100 13,800 19,400	7,300 11,800 17,000	6,000 10,000 14,700	5,000 8,600 12,700	4,200 7,300 11,200			
		$2\frac{1}{2}$ Inches, Depth of Buckle.							
5 16 3 8	13,800 20,500 27,600	11,300 17,300 24,300	9,100 14,800 21,300	7,500 12,500 18,400	6,300 10,700 15,900	5,300 9,200 13,900			
		3 Inches, Depth of Buckle.							
1 4 5 16	16,600 24,600 33,200	13,600 20,700 29,000	10,900 17,700 25,400	9,000 15,000 22,100	7,500 12,900 19,100	6,300 11,000 16,700			

If the buckles are inverted, *i. e.*, suspended, the safe loads will be increased from 2 to 4 times that given in the above table, depending upon the size of the plate.

Buckle plates are preferably made of soft steel.

### PASSAIC BUCKLE PLATES.



### DIMENSIONS OF BUCKLE PLATES.

No.	Buc	kle.	Depth of Buckle.	Number of Buckles in	Fillets.
Plate.	L.	w.	н.	One Plate.	F.
1	$2'-2\frac{1}{2}''$	$2'-3\frac{1}{2}''$	$2\frac{1}{2}^{\prime\prime}$	1 to 8	>
2	2'-5"	3'-2''	$2\frac{1}{2}^{\prime\prime}$	1 to 6	m, 6
3	2'-7"	2'-7"	3′′	1 to 6	Maximum, 6"
4	2'-7''	2'-7'	2''	1 to 6	Ma
5	3'-2"	3'-4''	3''	1 to 6	
6	3'-4''	3'-9''	$2\frac{1}{2}^{\prime\prime}$	1 to 6	27.
					Minimum, 2½"
					1 finin
					4

Buckles of other dimensions than those given in table may be made by special arrangement.

# STANDARD SLEEVE NUTS AND UPSETS.



### DIMENSIONS IN INCHES.

Diameter of Caronical Rods.	Side of	Diameter of Upset.	Length of Upset.	Short Diameter of Hexagon.	Long Diameter of Hexagon.	Number of Threads per inch.	Length of Sleeve Nut.	Weight of Sleeve Nut, Pounds.	Addit lengtrod refor	th of q'red one
		Dia	Lei	Shc	Lor	Nun	Leng	Weig	0	
$\frac{3}{4}$	<u>5</u>	1	4	$2\frac{1}{4}$	$2\frac{5}{8}$	8	81/4	4	$3\frac{3}{4}$	$4\frac{3}{4}$
7 8	$\frac{3}{4}$	$1\frac{1}{8}$	4	$2\frac{1}{4}$	$2\frac{5}{8}$	7	$8\frac{1}{2}$	5	$3\frac{1}{4}$	$3\frac{3}{4}$
1	7/8	$1\frac{3}{8}$	$4\frac{1}{2}$	$2\frac{3}{8}$	$2\frac{3}{4}$	6	$9\frac{1}{4}$	7	$4\frac{3}{4}$	5
11/8	1	$1\frac{1}{2}$	$4\frac{1}{2}$	27/8	$3\frac{5}{16}$	6	$9\frac{1}{4}$	8	$4\frac{1}{4}$	414
$1\frac{1}{4}$	11/8	15/8	$4\frac{1}{2}$	$2\frac{7}{8}$	$3_{16}^{5}$	$5\frac{1}{2}$	$9\frac{1}{2}$	9	$3\frac{3}{4}$	$3\frac{1}{2}$
$1\frac{3}{8}$	$1\frac{1}{4}$	17/8	5	$3\frac{1}{4}$	$3\frac{3}{4}$	5	$10\frac{1}{4}$	13	$5\frac{1}{4}$	$4\frac{1}{2}$
$1\frac{1}{2}$	13/8	2	5	$3\frac{1}{4}$	$3\frac{3}{4}$	$4\frac{1}{2}$	$10\frac{1}{4}$	13	$4\frac{3}{4}$	4
15/8	$1\frac{1}{2}$	$2\frac{1}{8}$	5	${3\frac{5}{8}}$	$4\frac{3}{16}$	$4\frac{1}{2}$	$10\frac{1}{2}$	16	41/4	$3\frac{1}{2}$
$1\frac{3}{4}$		$2\frac{1}{4}$	$5\frac{1}{2}$	$3\frac{3}{4}$	$4\frac{5}{16}$	$4\frac{1}{2}$	11	18	$4\frac{1}{4}$	
17/8	15/8	$2\frac{3}{8}$	$5\frac{1}{2}$	4	$4\frac{5}{8}$	4	111	21	4	$4\frac{1}{2}$
2	13/4	$2\frac{1}{2}$	$5\frac{1}{2}$	4	45/8	4	$11\frac{1}{4}$	22	$3\frac{3}{4}$	4
$2\frac{1}{8}$	17/8	$2\frac{5}{8}$	6	${4\frac{5}{8}}$	$\frac{-}{5\frac{3}{8}}$	4	12	29	$\frac{3_{3}}{4}$	4
$2\frac{1}{4}$	2	$2\frac{7}{8}$	6	$4\frac{3}{4}$	$5\frac{1}{2}$	$3\frac{1}{2}$	$12\frac{1}{4}$	33	$4\frac{1}{2}$	$4\frac{1}{2}$
$2\frac{1}{2}$	$2\frac{1}{4}$	$3\frac{1}{4}$	6	$5\frac{1}{8}$	$5\frac{15}{16}$	$3\frac{1}{2}$	$12\frac{1}{2}$	40	5	$4\frac{3}{4}$
$2\frac{3}{4}$	$2\frac{1}{2}$	$3\frac{1}{2}$	6	$5\frac{1}{2}$	$6\frac{3}{8}$	$3\frac{1}{4}$	$12\frac{3}{4}$	47	$4\frac{1}{2}$	4
3		$3\frac{3}{4}$	6	57/8	$6\frac{3}{4}$	3	13	58	4	
00		1	1							8

# SQUARE OR ROUND IRON RODS WITH LOOP EYES.

Additional length of rod, in inches, required beyond center of pin, to make one eye.

	22		19 <del>1</del> 20 <u>1</u> 21 <u>1</u>	355 55 55 55 55 55 55 55 55 55 55 55 55	267 277 28 30 30 30 30
	$\mathcal{Q}^1_{\downarrow}$		173 193 200 200	2112 2222 2324 2424 24144 24144 24144 24144 24144 24144 24144 24144 24144 24144 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2414 2	255 265 271 305 31
	$2\frac{1}{8}$		171 181 19 20	21. 22. 22. 23. 23. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	25 26 27 28 30 30
	ಣ	153	163 173 181 191 191	201 211 221 221 231 231	251 251 261 281 30 30
ies.	<b>-</b>  ∞	$15\frac{1}{2}$	154 174 191 191 191 191	20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	241 25 26 273 273 293
Diameter or side of Rod, in inches	<b>CO1-24.</b>	41 51	151 1467 177 181 181 181	191 202 204 214 2214 224	2333 2444 251 272 294 4
side of Re	- R	13½ 14½	152 164 174 174 184	19 20 21 21	231 241 25 27 284
neter or	13	352	15 16 16 17 17 17	181 194 204 204 214	223 234 241 261 261 281
Diar	<b>™</b>	125 135 135 135 135 135 135 135 135 135 13	141 152 164 164 174	$\frac{18_{4}^{1}}{19}$ 20 21	221 231 231 241 26 273
	44	11. 12. 13.	15 15 16 16	173 182 192 203	213 224 233 251 251 271
	-1×	103	. 13½ 14½ 15½ 16¼	174 184 19 20	211 221 224 234 25
	Н	104 114 12	13 15 15 15 ³	164 174 181 191 191	21 213 224 244 244 264
	Nx	94 104 114	122 132 144 154 154	164 174 174 184 19	20½ 21½ 22½ 22¼ 24¼ 26
	63/4	107 1174 1114	52.27.2	154 1734 1734 181	20 21 21 ³ 23 ¹ 25 ¹ 25 ¹
Diameter	or Fin, inches.	116 116 115	$2\frac{2^{13}_{15}}{2^{15}_{15}}$	$\begin{array}{c} 3_{16}^{13} \\ 3_{16}^{16} \\ 3_{16}^{14} \\ 3_{16}^{15} \end{array}$	455 43 583 482 572

### STANDARD STEEL EYE BARS.



w.	t.	D.	d.	s-s.	L.
Width of Bar, Inches.	Minimum Thickness of Bar, Inches.	Diameter of Head, Inches.	Diameter of Largest Pin Hole, Inches.	Sectional Area of Head on Lines S—S in excess of that in Body of Bar.	Additional Length of Bar beyond Cen. of Pin Hole to form one Head, Ins.
3 3	3 4	<b>7</b> 8	$3^{11}_{16}$	42% 42	$18\frac{1}{2}$
4 4	3 4	$9\frac{1}{2}$ $10\frac{1}{2}$	$\frac{3\frac{15}{16}}{4\frac{7}{8}}$	$\frac{37\frac{1}{2}}{39}$	$23\frac{1}{2}$
5 5	3 4	$11\frac{1}{2} \\ 12\frac{1}{2}$	$5\frac{3}{8}$	41 41	$25\frac{1}{2}$
6 6	7 8	$13\frac{1}{2} \\ 14\frac{1}{2}$	$\begin{array}{ c c c }\hline 5^{7}_{8} & 4^{7}_{8} \\ \hline \end{array}$	42 42	$26\frac{1}{2}$
7 8	118	16 18	$\begin{bmatrix} 5\frac{7}{8} \\ 7 \\ 9 \end{bmatrix}$	$\frac{43}{37\frac{1}{2}}$	28 32½
10	$1\frac{1}{4}$	23	9	40	40

### NOTES ON PASSAIC STEEL EYE BARS.

Passaic standard steel eye bars are forged without the addition of extraneous metal and without welds of any kind, and are guaranteed under the conditions given in the above table to develop the full strength of the bar

when tested to destruction.

The maximum sizes of pin holes, given in the above table, allow an excess in the net section of the head over that of the body of the bar of 40 per cent., when the thickness of the head is the same as the thickness of the body of the bar. The thickness of the head is usually 1-16 of an inch thicker than the body of the bar; and where a number of eye bars are to be placed closely together, as at a joint, the thicknesses of the heads should be considered 1-8 of an inch greater than the bodies of the bars in order to allow for the increased thickness of the heads and for the usual roughness of forged work.

Unless otherwise specified, the steel manufactured by us for the use of

eye bars is open hearth medium steel conforming with the standard specifi-

cations of the Association of American Steel Manufacturers.

All eye bars are finished to length, and the eyes bored at the specified distances, center to center, according to U. S. standard measurements. Eye bars having larger or smaller heads than the above standards can be

furnished by special arrangement.

### STANDARD PINS AND NUTS.



$$G = GRIP$$
.  $L = G + \frac{3}{8}$ .

D.	т.	s.			
Diameter of Pin, Inches.	Diameter of Thread, Inches.	Length of Thread, Inches.	Short Dia. of Nut, Inches.	Long Dia. of Nut, Inches.	Weight of One Nut, Lbs.
$egin{array}{c} 1_{16}^3 \ 1_{16}^{7} \ 1_{16}^{11} \ 1_{16}^{15} \ \end{array}$	$1 \\ 1 \\ 1^{\frac{1}{2}}$	1½ // // // // // // // // // // // // //	$\begin{array}{c} 1\frac{3}{4} \\ 1\frac{3}{4} \\ 3\frac{1}{4} \\ 3\frac{1}{4} \end{array}$	$\begin{array}{c} 2\\2\\3\frac{3}{4}\\3\frac{3}{4}\end{array}$	1.5 1.5
$\begin{array}{c} 2_{16}^{3} \\ 2_{16}^{7} \\ 2_{16}^{11} \\ 2_{16}^{15} \end{array}$	$ \begin{array}{c c}  & 1\frac{1}{2} \\  & 1\frac{3}{4} \\  & 2 \\  & 2\frac{1}{4} \end{array} $	1½ " "	$ \begin{array}{c} 3_{4}^{1} \\ 3_{4}^{1} \\ 3_{4}^{3} \\ 4_{2}^{1} \end{array} $	$ \begin{array}{c} 3\frac{3}{4} \\ 3\frac{3}{4} \\ 4\frac{1}{4} \\ 5\frac{1}{4} \end{array} $	1.5 1.5 2.5 3.0
$\begin{array}{c} 3_{16}^{3} \\ 3_{16}^{7} \\ 3_{16}^{11} \\ 3_{16}^{15} \end{array}$	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \end{array} $	1½ // // // //	$egin{array}{ccc} \cdot 4rac{1}{2} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} 5\frac{1}{4} \\ 5\frac{1}{4} \\ 5\frac{1}{2} \\ 5\frac{1}{2} \end{array} $	2.8 2.8 3.0 3.0
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 4 \\ 4 \end{array} $	$1\frac{1}{2}$ "  2	$\begin{array}{c} 5\frac{1}{2} \\ 5\frac{1}{2} \\ 6 \\ 6 \end{array}$	$\begin{array}{c} 6\frac{1}{4} \\ 6\frac{1}{4} \\ 7 \\ 7 \end{array}$	3.8 3.8 6.7 6.7
57/8 7 8 9	4 5 6 7	$ \begin{array}{c} 2 \\ 2\frac{1}{4} \\ 2\frac{1}{4} \\ 2\frac{1}{4} \end{array} $	$ \begin{array}{c c} 7 \\ 8 \\ 10\frac{1}{2} \end{array} $	8 9 ¹ / ₄ 12 12	9.1 12.0 22.8 18.8

### PASSAIC STANDARD CLEVISES.



The distance X can be varied to suit connections.

		U	D	Р	L	w	Т	S	
Num- ber of Clevis.	Side of Square Bar, inches.	Upset for Square Bar.	Diameter of Eye, inches.	Diam- eter of Pin, inches.	Length of Fork, inches.	of Fork,	Thick- ness of Fork, inches.	Length of Thread inches.	Weight of one Clevis, lbs.
1	5x 34 78	$   \begin{array}{c}     1 \\     1\frac{1}{8} \\     1\frac{3}{8}   \end{array} $	$\left.\begin{array}{c} \\ \\ \\ \end{array}\right\} 3\frac{1}{2}$	1116	62	13	1/2	134	8
2	1 1, 1 ¹ / ₄	$rac{1rac{1}{2}}{1rac{5}{8}}$ $rac{7}{8}$	$\left.\begin{array}{c} 4\frac{1}{2} \end{array}\right.$	$2\frac{3}{16}$	61/2	2	538	21/4	12
3{	1 ³ 1 ¹ / ₂	$\frac{2}{2\frac{1}{8}}$	$\Bigg\} 5\frac{1}{2}$	$2\frac{11}{16}$	7	21/2	3 4	21/2	20
4	15 13 17 18	$egin{array}{c} 2rac{3}{8} \ 2rac{1}{2} \ 2rac{3}{4} \end{array}$	$\left. \right\} 6 \frac{1}{2}$	$2\frac{15}{16}$	8	3	78	3	28
5	$2 \\ 2\frac{1}{4}$	$2\frac{7}{8}$ $3\frac{1}{4}$	}8	3,76	9	$3\frac{1}{2}$	1	31/2	45

Passaic clevises are proportioned to develop the full strength of iron or steel bars of the sizes given.

The size of pin given is the maximum for each size of clevis when the largest bar is used.

# LINEAL EXPANSION OF SUBSTANCES BY HEAT.

To find the increase in the length of a bar of any material due to an increase of temperature, multiply the number of degrees of increase of temperature by the coefficient for 100° and by the length of the bar, and divide by one hundred.

NAME OF SUBSTANCE.	Coefficient for 100° Fahrenheit.	Coefficient for 180° Fahrenheit, or 100° Centigrade.
Aluminum (cast)	.001234	.00222
Brass (cast)	.000957	.00172
Brick	.000306	.00055
Bronze	.000986	.00177
Cement, Portland	.000594	.00107
Concrete	.000795	.00143
Copper	.000887	.00160
Glass, flint	.000451	.00081
Granite	.000438	.00079
Gold, pure	.000786	.00142
Iron, wrought	.000648	.00117
" cast	.000556	.00100
Lead	.001571	.00283
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.000308	.00055
Marble { to	.000786	.00142
Masonry, brick from	.000256	.00046
masonry, brick to	.000494	.00089
Mercury (cubic expansion)	.009984	.01797
Sandstone	.000652	.00117
Silver, pure	.001079	.00194
Slate	.000577	.00104
Steel, cast	.000636	.00114
" structural	.000663	.00119
" tempered	.000689	.00124
Tin	.001163	.00210
Wood, pine	.000276	.00050
Zinc	.001407	.00253
2		90

# AREAS AND WEIGHTS OF SQUARE AND ROUND STEEL BARS.

ness, ies.			(	O	ness, ies.				)
Thickness, Inches.	Area.	Weight per ft.	Area.	Weight per ft.	Thickness, Inches.	Area.	Weight per ft.	Area.	Weight per ft.
0 16 18 3 16	0.004 .016 .035	0.013 .053 .119	$0.003 \\ .012 \\ .028$	0.010 .042 .094	2 16 18 3 16	$4.254 \\ 4.516$	13.60 14.46 15.35 16.27	3.142 3.341 3.547 3.758	$11.36 \\ 12.06$
14 16 38 7 16	.062 .098 .141 .191	.212 .333 .478 .651	.049 .077 .110 .150	.167 .261 .375 .511	14 16 38 16	$5.348 \\ 5.641$	17.22 18.19 19.18 20.20	3.976 4.200 4.430 4.666	14.28 15.07
1 0 1 6 5 8 1 1 1 1 6	.250 .316 .391 .473	.850 1.076 1.328 1.608	.196 .248 .307 .371	.667 .845 1.043 1.262	1 2 16 5 8 11 16	$6.566 \\ 6.891$	21.25 22.33 23.43 24.56	4.909 5.157 5.412 5.673	$17.53 \\ 18.40$
$\frac{3}{4}$ $\frac{13}{16}$ $\frac{7}{8}$ $\frac{15}{16}$	.562 .660 .766 .879	1.913 2.245 2.603 2.989	.442 .518 .601	1.502 1.763 2.044 2.347	$\frac{3}{4}$ $\frac{13}{16}$ $\frac{7}{8}$ $\frac{15}{16}$	$ \begin{array}{ c c c c } \hline 7.910 \\ 8.266 \end{array} $	25.71 $26.90$ $28.10$ $29.34$	5.940 6.213 6.492 6.777	$21.12 \\ 22.07$
1 16 18 3 16	1.000 1.129 1.266 1.410	3.400 3.838 4.303 4.795	.785 .887 .994 1.108	2.670 3.014 3.379 3.766	3 16 18 3 16	9.379	30.60 31.89 33.20 34.55	7.069 7.366 7.670 7.980	$25.04 \\ 26.08$
14 16 38 7 16	1.563 1.723 1.891 2.066	5.312 5.857 6.428 7.026	1.353	4.173 4.600 5.049 5.518	1 4 5 16 3 8 7 16	10.56 10.97 11.39 11.82	35.92 37.31 38.73 40.18	8.946	28.20 29.30 30.42 31.56
$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{16} \\ \frac{5}{8} \\ \frac{11}{16} \end{array} $	2.250 2.441 2.641 2.848	8.978	1.767 $1.918$ $2.074$ $2.237$	6.008 6.520 7.051 7.604	$ \begin{array}{c c} \frac{1}{2} & 9 \\ 16 & 5 \\ 8 & 11 \\ 16 & 16 \end{array} $	12.25 12.69 13.14 13.60	41.65 43.14 44.68 46.24	9.621 9.968 10.32 10.68	32.71 33.90 35.09 36.31
$ \begin{array}{c c} 3\\ 13\\ 16\\ 7\\ 8\\ 15\\ 16 \end{array} $	$\begin{vmatrix} 3.285 \\ 3.516 \end{vmatrix}$	10.41 11.17 11.95 12.76	2.405 $2.580$ $2.761$ $2.948$		$\begin{array}{c} \frac{3}{4} \\ \frac{13}{16} \\ \frac{7}{8} \\ \frac{15}{16} \end{array}$	14.06 14.54 15.02 15.50	$49.42 \\ 51.05$	11.05 11.42 11.79 12.18	37.56 38.81 40.10 41.40

### AREAS AND WEIGHTS OF SQUARE AND ROUND STEEL BARS

(Continued).

ness, es.				)	ness,				
Thickness, Inches.	Area.	Weight per ft.	Area.	Weight per ft.	Thickness, Inches.	Area.	Weight per ft.	Area.	Weight per ft.
4 16 18 3 16	16.00 16.50 17.02 17.54	54.40 56.11 57.85 59.62	$12.96 \\ 13.36$	44.07 45.44	6 18 38	36.00 37.52 39.06 40.64	$127.6 \\ 132.8$	28.27 $29.47$ $30.68$ $31.92$	
1 16 38 7 16	18.06 18.60 19.14 19.69	61.41 $63.23$ $65.08$ $66.95$	$14.61 \\ 15.03$	49.66 51.11	12 58 34 78	42.25 43.89 45.56 47.27	$\begin{array}{c} 149.2 \\ 154.9 \end{array}$	33.18 34.47 35.79 37.12	$117.2 \\ 121.7$
1 16 5 8 11 16	20.25 $20.82$ $21.39$ $21.97$	70.78 72.73	15.90 16.35 16.80 17.26	$55.59 \\ 57.12$	7			38.49 41.28 44.18 47.17	$\begin{array}{c} 140.4 \\ 150.2 \end{array}$
$\begin{array}{c} \frac{3}{4} \\ \frac{13}{16} \\ \frac{7}{8} \\ \frac{15}{16} \end{array}$	22.56 23.16 23.77 24.38	78.74 80.81	18.19 $18.67$	60.25 61.84 63.46 65.10	8 1/4 1/2 3/4	72.25	217.6 $231.4$ $245.6$ $260.3$	$53.46 \\ 56.75$	171.0 181.8 193.0 204.4
5 16 18 3 16	25.00 $25.63$ $26.27$ $26.91$	87.14 89.30	$20.13 \\ 20.63$	66.76 68.44 70.14 71.86	9	$\begin{vmatrix} 85.56 \\ 90.25 \end{vmatrix}$	275.4 $290.9$ $306.8$ $323.2$	67.20 $70.88$	216.3 228.5 241.0 253.9
$\begin{bmatrix} \frac{1}{4} & & & \\ \frac{1}{4} & & & \\ \frac{3}{16} & & & \\ \frac{7}{16} & & & \end{bmatrix}$	27.56 28.22 28.89 29.57	93.72 95.96 98.23 100.5	22.69		10	100.0 105.1 110.3 115.6	340.0 357.2 374.9 392.9	$82.52 \\ 86.59$	267.0 280.6 294.4 308.6
$ \begin{array}{c c} \frac{1}{2} & & \\ 0 & 16 \\ \frac{5}{8} & & \\ \frac{11}{16} & & \\ \end{array} $	$\frac{30.94}{31.64}$	102.8 105.2 107.6 110.0	$\begin{vmatrix} 24.30 \\ 24.85 \end{vmatrix}$	80.77 82.62 84.49 86.38	11 1/4 1/2 3/4	121.0 126.6 132.3 138.1	411.4 430.3 449.6 469.4		323.1 337.9 353.1 368.6
3 116 7 8 15 16	$33.79 \\ 34.52$	112.4 114.9 117.4 119.9	26.54 $27.11$	88.29 90.22 92.17 94.14	12	144.0	489.6	113.1	384.5

### WEIGHTS

### OF PASSAIC STEEL ANGLES.

Size of Angle,		Weights per foot for different thicknesses.								
in Inches.	5 // 16	3//	7//	1/1	9//	5//8	11/1	3//	13//	7/1
$\begin{array}{c} 6 \times 6 \\ 6 \times 4 \end{array}$		14.8 12.3	17.4 14.4					$\frac{29.0}{24.2}$		$\frac{34.0}{28.4}$
$ \begin{array}{c} 5 \times 5 \\ 5 \times 3\frac{1}{2} \\ 5 \times 3 \end{array} $	8.16		14.4 $12.2$ $11.2$	14.0	15.8	16.7	21.8 18.5 17.6	20.3		
$4\frac{1}{2} \times 3$	7.65	9.21	10.5	12.1	13.7	14.6	16.2	17.8		
$\begin{array}{c} 4 & \times 4 \\ 4 & \times 3\frac{1}{2} \\ 4 & \times 3 \end{array}$	8.16 7.65 7.11	9.21	$     \begin{array}{r}       11.2 \\       10.5 \\       9.80 \\     \end{array} $	12.1	13.7	14.6	16.2	19.1 17.8	20.8	
$3\frac{1}{2} \times 3\frac{1}{2} \times 3$	$\begin{array}{c} \hline 7.11 \\ 6.56 \end{array}$	8.60 7.82								
Size of Angle,	Weights per foot for different thicknesses.									
in Inches.	1//8	3//	1//	5 // 16	3//	7 11	1//	9//	<u>5</u> //	11/1
$3\frac{1}{2} \times 2\frac{1}{2}$			4.90	6.15	7.17	8.43	9.35	10.6		
$\begin{array}{c} 3 \times 3 \\ 3 \times 2\frac{1}{2} \\ 3 \times 2 \end{array}$			4.45	5.64	6.53		$9.56 \\ 8.50 \\ 7.65$	$\frac{10.8}{9.69}$	12.1	
$\begin{array}{ c c }\hline 2\frac{1}{2}\times2\frac{1}{2}\\2\frac{1}{2}\times2\end{array}$		2.75	$\frac{4.05}{3.70}$							
$2\frac{1}{4} \times 2\frac{1}{4} \ 2\frac{1}{4} \times 1\frac{1}{2}$		2.75 2.28	3.60 3.06		5.20	6.22	7.17			
$\begin{array}{ccc} 2 & \times & 2 \\ 2 & \times & 1\frac{3}{4} \end{array}$		$\frac{2.41}{2.28}$	$\frac{3.19}{3.06}$	$\frac{4.05}{3.64}$	4.62	5.47	6.32			
$\begin{array}{ c c }\hline 1\frac{3}{4} \times 1\frac{3}{4} \\ 1\frac{1}{2} \times 1\frac{1}{2} \\ 1\frac{3}{8} \times 1\frac{1}{8} \\ \end{array}$	1.02	2.11 1.80 1.53	2.75 2.35 1.90	2.96	3.98 3.33	4.72				
$ \begin{array}{c c} \hline 1\frac{1}{4} \times 1\frac{1}{4} \\ 1 \times 1 \\ \frac{7}{8} \times \frac{7}{4} \\ \frac{3}{4} \times \frac{3}{4} \end{array} $	1.02 .78 .68 .58	1.46 1.15 .99 .85	2.01 1.57	2.55						

### WEIGHTS OF STEEL FLATS,

PER LINEAL FOOT.

Thickness, in Inches.	1"	11/1	$1\frac{1}{2}^{\prime\prime}$	13/1	2"	$2\frac{1}{4}^{\prime\prime}$	2½''	2 ³ //	3′′
16 18 3 16	.21 .42 .63 .85	.26 .53 .79 1.06	.32 .64 .96 1.28	.37 .75 1.11 1.49	.43 $.85$ $1.28$ $1.70$	.48 .96 1.44 1.91	.53 1.06 1.59 2.12	.58 1.17 1.75 2.34	.63 1.28 1.91 2.55
$\frac{\frac{5}{16}}{\frac{3}{8}}$	1.06 1.28 1.49 1.70	1.33 1.59 1.86 2.12	1.59 1.92 2.23 2.55	1.86 2.23 2.60 2.98	2.12 2.55 2.98 3.40	2.39 2.87 3.35 3.83	2.65 3.19 3.72 4.25	2.92 3.51 4.09 4.67	3.19 3.83 4.46 5.10
58 11 10	1.92 2.12 2.34 2.55	2.39 2.65 2.92 3.19	2.87 3.19 3.51 3.83	3.35 3.72 4.09 4.47	3.83 4.25 4.67 5.10	4.30 4.78 5.26 5.75	4.78 5.31 5.84 6.38	5.26 5.84 6.43 7.02	5.74 6.38 7.02 7.65
13 78 15 16	2.76 2.98 3.19 3.40	3.45 3.72 3.99 4.25	4.14 4.47 4.78 5.10	4.84 5.20 5.58 5.95	5.53 5.95 6.38 6.80	6.21 6.69 7.18 7.65	6.90 7.44 7.97 8.50	7.60 8.18 8.77 9.35	8.29 8.93 9.57 10.20
$1\frac{1}{16}$ $1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$	3.61 3.83 4.04 4.25	4.52 4.78 5.05 5.31	5.42 5.74 6.06 6.38	6.32 6.70 7.07 7.44	7.22 7.65 8.08 8.50	8.13 8.61 9.09 9.57	$9.57 \\ 10.10$	$10.52 \\ 11.11$	10.84 11.48 12.12 12.75
$\begin{array}{c} 1_{\frac{1}{16}} \\ 1_{\frac{3}{8}}^{\frac{3}{16}} \\ 1_{\frac{1}{2}}^{\frac{7}{16}} \end{array}$	4.46 4.67 4.89 5.10	5.58 5.84 6.11 6.38	6.69 7.02 7.34 7.65	7.81 8.18 8.56 8.93	9.35	$10.52 \\ 11.00$	$11.69 \\ 12.22$	12.85 13.44	14.66
$egin{array}{c} egin{array}{c} oldsymbol{1}rac{9}{8} \ oldsymbol{1}rac{5}{8} \ oldsymbol{1}rac{11}{16} \ oldsymbol{1}rac{3}{4} \end{array}$	5.32 5.52 5.74 5.95	6.64 6.90 7.17 7.44		$\begin{array}{c} 9.67 \\ 10.04 \end{array}$		12.43 12.91	13.81 14.34	15.19 15.78	16.58 17.22
$egin{pmatrix} egin{pmatrix} \egn{pmatrix} \e$	6.16 6.38 6.59 6.80	8.24	9.57	$11.15 \\ 11.53$	12.75 13.18	14.34 14.83	15.94 16.47	17.53 18.12	18.49 19.13 19.77 20.40

### WEIGHTS OF STEEL FLATS,

### PER LINEAL FOOT

(Continued).

Thickness, in inches.	31/1	4"	41/2 "	5″	5½"	6′′	61/1	7″	71''
1 16 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	.75 1.49 2.23 2.98	$\frac{1.70}{2.55}$	.96 1.92 2.87 3.83	2.13	1.17 2.34 3.51 4.67	1.28 2.55 3.83 5.10		1.49 2.98 4.46 5.95	1.60 3.19 4.78 6.36
38 7 10 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	3.72 4.47 5.20 5.95		4.78 5.74 6.70 7.65	5.31 6.38 7.44 8.50	5.84 7.02 8.18 9.35		$8.29 \\ 9.67$	$8.93 \\ 10.41$	$9.57 \\ 11.16$
5 1 1 5 1 6 3 4	6.70 7.44 8.18 8.93	8.50	$\begin{array}{c} 9.57 \\ 10.52 \end{array}$	$10.63 \\ 11.69$	$\frac{11.69}{12.85}$	11.48 12.75 14.03 15.30	$13.81 \\ 15.20$	$14.87 \\ 16.36$	15.94 17.53
1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	$10.41 \\ 11.16$	11.05 11.90 12.75 13.60	$13.39 \\ 14.34$	$14.87 \\ 15.94$	$16.36 \\ 17.53$	$17.85 \\ 19.13$	19.34 $20.72$	$20.83 \\ 22.32$	$22.32 \\ 23.91$
$egin{array}{c} egin{array}{c} oldsymbol{1}_{18}^{\perp} \ oldsymbol{1}_{100}^{\perp} \ oldsymbol{1}_{14}^{\perp} \ \end{array}$	$13.39 \\ 14.13$	14.45 15.30 16.15 17.00	17.22 18.17	$19.13 \\ 20.19$	$21.04 \\ 22.21$	$22.95 \\ 24.23$	$24.87 \\ 26.24$	$26.78 \\ 28.26$	$28.68 \\ 30.28$
$\begin{bmatrix} 1_{\frac{3}{16}} \\ 1_{\frac{3}{8}}^{\frac{5}{16}} \\ 1_{\frac{1}{2}}^{\frac{7}{16}} \end{bmatrix}$	$16.36 \\ 17.10$	17.85 18.70 19.85 20.40	$21.04 \\ 21.99$	$23.38 \\ 24.44$	$25.71 \\ 26.88$	$28.05 \\ 29.33$	$\frac{30.39}{31.77}$	$32.72 \\ 34.21$	$35.06 \\ 36.66$
$egin{array}{c} 1_{10}^{9} \\ 1_{8}^{5} \\ 1_{10}^{4} \\ 1_{4}^{3} \\ \end{array}$	$\frac{19.34}{20.08}$	21.25 22.10 22.95 23.80	24.87 $25.82$	$27.63 \\ 28.69$	$\frac{30.39}{31.55}$	$33.15 \\ 34.43$	$35.91 \\ 37.30$	$38.67 \\ 40.16$	$41.44 \\ 43.03$
$egin{pmatrix} egin{pmatrix} \egn{pmatrix} \e$	$22.31 \\ 23.06$	24.65 25.50 26.35 27.20	28.69 $29.64$	$31.87 \\ 32.94$	$\begin{array}{c} 35.06 \\ 36.23 \end{array}$	$38.25 \\ 39.53$	$\frac{41.44}{42.82}$	$44.63 \\ 46.12$	47.82 49.41

### WEIGHTS OF STEEL FLATS,

### PER LINEAL FOOT

(Continued).

Thickness, in inches.	8"	81 "	9″	91/1	10′′	101/	11′′	111/1	12"
16 16 8 3 16 1	$   \begin{array}{r}     1.70 \\     3.40 \\     5.10 \\     6.80   \end{array} $	1.81 3.61 5.42 7.22	1.91 3.82 5.74 7.65	2.02 $4.04$ $6.06$ $8.08$		$\begin{vmatrix} 4.46 \\ 6.70 \end{vmatrix}$		4.89 7.32	
3 8 7 16	11.90	$10.84 \\ 12.64$	$\frac{11.48}{13.40}$	$12.12 \\ 14.14$	12.75 14.88	11.16 13.39 15.62 17.85	$14.03 \\ 16.36$	$14.68 \\ 17.12$	15.30 17.85
10 5 8 116 34	$17.00 \\ 18.70$	$18.06 \\ 19.86$	19.13 $21.04$	20.19 $22.21$	21.25 $23.38$	$\begin{vmatrix} 20.08 \\ 22.32 \\ 24.54 \\ 26.78 \end{vmatrix}$	23.38  25.70	$24.44 \\ 26.88$	$\begin{bmatrix} 25.50 \\ 28.05 \end{bmatrix}$
136 78 156 1	$23.80 \\ 25.50$	$25.30 \\ 27.10$	$26.78 \\ 28.69$	$\frac{28.26}{30.28}$	29.75	29.00 31.24 33.48 35.70	$\begin{vmatrix} 32.72 \\ 35.06 \end{vmatrix}$	$\frac{34.21}{36.66}$	35.70
$\begin{array}{c} 1_{\frac{1}{16}}^{\frac{1}{16}} \\ 1_{8}^{\frac{1}{8}} \\ 1_{16}^{\frac{3}{16}} \end{array}$	$\begin{vmatrix} 30.60 \\ 32.30 \end{vmatrix}$	32.52 $34.32$	$34.43 \\ 36.34$	36.34 $38.36$	38.25 $40.38$	$\frac{1}{40.17}$	42.08 $44.42$	44.00 $46.44$	43.35 45.90 48.45 51.00
$\begin{bmatrix} 1_{\frac{1}{16}}^{\frac{5}{16}} \\ 1_{\frac{2}{8}}^{\frac{2}{8}} \\ 1_{\frac{1}{2}}^{\frac{7}{16}} \end{bmatrix}$	37.40 39.10	39.74	42.08 $44.00$	844.41	48.8	$\frac{1}{5}$ $\frac{49.08}{51.32}$	$\frac{851.42}{253.76}$	$53.76 \ 56.21$	2 53.55 5 56.10 5 58.65 5 61.20
$\begin{bmatrix} 1_{\frac{9}{16}} \\ 1_{\frac{5}{8}} \\ 1_{\frac{14}{16}} \\ 1_{\frac{3}{4}} \end{bmatrix}$	44.20	0.46.90 0.48. <b>7</b> 0	$\frac{5}{6}$ $\frac{49.73}{51.64}$	352.49 $454.51$	55.25 157.38	558.026860.24	163.10	63.54	0 63.75 4 66.30 8 68.85 3 71.40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51.00 $52.70$	$0.54.20 \\ 0.56.00$	57.38	$\frac{8}{9}60.50$	863.78	$\frac{5}{8} \frac{66}{69} \cdot \frac{94}{18}$	170.12	$2 \mid 73.3 \mid 6 \mid 75.76$	5 73.95 1 76.50 6 79.05 0 81.60

PER LINEAL FOOT	TOO T TITLE
PER I	
DI ATTES	CHITTE
PATERI DIATES	
THO K	F
WEIGHTS	CTTOTT

, w ₄	.16 .32 .48 .64	.80 .96 1.12 1.28	1.44 1.60 1.76 1.92	2.23 2.23 2.55
7/13	1.33.84.	£6. 25. 28.	.96 1.06 1.17 1.28	1.38 1.49 1.60 1.70
74	.05 11. 12.	9. 9. 9. 4. 1. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	.53 .59 .64	85.88
25"	5.32 10.63 15.96 21.26	26.56 31.88 37.20 42.50	47.80 53.12 58.44 63.76	69.06 74.38 79.68 85.00
24"	89 5.10 5. 78 10.20 10. 64 15.32 15. 56 20.40 21.	25.52 30.60 35.72 40.80	45.92 47. 51.00 53. 56.12 58. 61.20 63.	66.29 69 71.40 74 76.50 79 81.60 85
23″	4.89 9.78 14.64 19.56	24.44 29.36 34.24 39.10	44.0045.48.8851.53.7656.55.6661.	63.53 66 68.4371 73.32 76 78.20 81
22"	4.68 9.35 14.04 18.69	23.36 28.06 32.72 37.40	42.04 46.76 51.40 56.10	60.79 63. 65.44 68. 70.13 73. 74.80 78.
21"	3.83 4.04 4.25 4.46 4.68 4.89 5.10 5.32 7.65 8.08 8.50 8.92 9.35 9.78 10.20 10.63 11.48 12.10 12.76 13.40 14.04 14.64 15.32 15.96 15.30 16.16 17.00 17.84 18.69 19.56 20.40 21.26	26.32 26.78 31.24 35.70	$\begin{array}{c} 70 \ 30. \ 60 \ 32. 52 \ 34. \ 44 \ 36. \ 34 \ 38. \ 27 \ 40. \ 16 \ 46. \ 76 \ 48. \ 8851. \ 0053. \ 12 \ 38. \ 25 \ 40. \ 37 \ 42. \ 50 \ 44. \ 64 \ 46. \ 76 \ 48. \ 8851. \ 0053. \ 12 \ 39. \ 72 \ 42. \ 08 \ 44. \ 42 \ 46. \ 74 \ 49. \ 0851. \ 40 \ 53. \ 7656. \ 12 \ 58. \ 46 \ 51. \ 00 \ 53. \ 56 \ 56. \ 10 \ 58. \ 66 \ 61. \ 20 \ 63. \ 76 \ 57. \ 76 \ 77 \ 77 \ 77 \ 77 \ 77 \ 77 \ $	$\begin{array}{c} 44.20 \ 46.96 \ 49.72 \ 52.48 \ 55.25 \ 58.01 \ 60.79 \ 63.53 \ 66.29 \ 69.06 \\ 47.60 \ 50.60 \ 53.56 \ 56.55 \ 59.59 \ 50.62.49 \ 65.44 \ 68.43 \ 71.40 \ 74.38 \\ 51.00 \ 54.20 \ 57.38 \ 60.57 \ 66.96 \ 70.13 \ 73.32 \ 76.50 \ 79.68 \\ 54.40 \ 57.80 \ 61.20 \ 64.60 \ 68.00 \ 71.40 \ 74.80 \ 78.20 \ 81.60 \ 85.00 \end{array}$
50′′	4.25 8.50 12.76 17.00	21.24 25.50 29.75 34.00	38.27 42.50 46.74 51.00	55.25 58 59.50 62 63.76 66 68.00 71
19″	4.04 8.08 12.10 16.16	20.20 24.24 28.28 32.31	36.34 40.37 44.42 48.46	72 52.48 55. 56 56.52 59. 38 60.57 63. 20 64.60 68.
18″	$\begin{array}{c} 3.83 \\ 7.65 \\ 8.08 \\ 11.4812.10 \\ 15.3016.16 \end{array}$	19.12 26.79 26.79 30.60	38.25 42.08 45.92	49.72 53.56 57.38 61.20
12"	3.61 7.22 10.84 14.44	18.06 21.68 25.28 28.89	32.52 36.12 39.72 43.36	$ \begin{array}{c c} 46.96 & 49 \\ 50.60 & 53 \\ 54.20 & 57 \\ 57.80 & 61 \end{array} $
16"	3.19 3.40 6.38 6.80 9.5610.20 12.75 13.60	20.40 23.80 27.20	30.60 34.00 37.40 40.80	44.20 46 47.60 50 51.00 54 54.40 57
15"	3.19 6.38 9.56 12.75	14.88 15.94 17.00 18.06 19.12 20.20 21.24 22.32 23.36 24.44 25.52 26.10 26.19.14 20.40 21.68 22.96 24.24 25.50 26.78 28.06 29.36 30.60 31.8 20.82 22.32 23.80 25.28 26.79 28.28 29.75 31.24 32.72 34.24 35.72 37.5 33.80 25.20 28.89 30.60 32.31 34.00 35.70 37.40 39.10 40.80 42.8	28.70 31.88 35.06 38.26	41.43 44.62 47.82 51.00
14"	2.97 5.95 8.92 11.90	14.88 17.86 120.82 23.80	26.78 29.74 32.72 35.71	38.67 41.43 41.65 44.69 44.63 47.82 47.60 51.00
13″	2.76 5.53 8.28 11.06	13.81 14 16.58 17 19.34 20 22.10 23	24.86 27.62 30.39 33.16	15 35.91 38.67 41.43 70 38.68 41.65 44.62 25 41.44 44.63 47.82 80 44.20 47.60 51.00
12″	2.55 5.10 7.66 10.20	12.76 15.30 17.86 20.40	22.96 25.50 28.06 30.60	$\begin{array}{c} 33.15 \ 35.91 \ 38.67 \ 41.43 \ 44.20 \ 46.96 \ 49.72 \ 59.48 \ 55.25 \ 58.01 \ 60.79 \ 63.53 \ 66.29 \ 69.06 \ 35.70 \ 38.89 \ 41.65 \ 44.63 \ 47.80 \ 54.20 \ 57.88 \ 60.57 \ 63.76 \ 66.96 \ 70.13 \ 73.32 \ 76.50 \ 79.68 \ 44.20 \ 47.60 \ 51.00 \ 54.40 \ 57.80 \ 61.20 \ 68.00 \ 71.40 \ 74.80 \ 78.20 \ 81.60 \ 85.00 \ 85.00 \ 71.40 \ 74.80 \ 78.20 \ 81.60 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \ 85.00 \$
Thickness, in Inches.	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 16 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×× ₩

WEIGHTS OF STEEL PLATES PER LINEAL FOOT (continued).

13//	.37	1.86	3.35	4.84
	.75	2.23	3.72	5.20
	1.11	2.60	4.09	5.58
	1.49	2.98	4.47	5.95
11/2/1	.32	1.59	2.87	4.14
	.64	1.92	3.19	4.47
	.96	2.23	3.51	4.78
	.1.28	2.55	3.83	5.10
14"	.53 .53 1.06	1.33 1.59 1.86 2.12	2.39 2.95 3.19	3.45 3.72 3.99 4.25
1,,	2.4.2.8	1.06 1.28 1.49 1.70	2.13 2.13 2.34 2.55	2.76 2.98 3.19 3.40
46"	9.77 19.56 29.29 39.11	48.88 58.71 68.47 78.20	88.00 97.76 107.53 117.31	
44"	9.39 18.69 28.08 37.38	46.72 56.12 65.44 74.80	84.09 93.52 102.81 112.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
42"	8.93	44.64	80.32	116.02
	17.85	53.56	89.28	124.98
	26.80	62.48	98.16	133.92
	35.68	71.40	107.12	142.80
40′′	8.50	42.48	76.54	110.50
	17.00	51.00	85.00	119.00
	25.52	59.50	93.48	127.52
	34.00	68.00	102.00	136.00
38′′	8.08	40.39	72.68	104.96
	16.16	48.48	80.74	113.04
	24.20	56.56	88.84	121.14
	32.32	64.62	96.92	129.20
. 36″	7.65	38.24	68.88	99.44
	15.29	45.92	76.50	107.12
	22.96	53.58	84.15	114.76
	30.59	61.20	91.84	122.40
34"	7.23	36.12	65.04	93.91
	14.44	43.36	72.24	101.20
	21.68	50.57	79.44	108.40
	28.88	57.78	86.72	115.60
32″	6.80	34.00	61.22	88.39
	13.60	40.80	68.00	95.20
	20.40	47.60	74.80	102.00
	27.20	54.40	81.61	108.80
30′′	6.37	31.88	57.40	82.86
	12.75	38.28	63.76	89.24
	19.12	44.64	70.13	95.64
	25.50	51.00	76.53	102.00
7,67	6.16	30.80	55.48	80.10
	12.32	37.00	61.60	86.29
	18.48	43.14	67.77	92.44
	24.64	49.28	73.97	98.60
28″	5.95	29.76	53.56	77.34
	11.90	35.72	59.49	83.30
	17.84	41.65	65.44	89.26
	23.80	47.60	71.42	95.20
22	5.74	28.68	51.64	74.58
	11.48	34.44	57.37	80.33
	17.20	40.17	63.11	86.07
	22.96	45.92	68.88	91.80
798	5.52	27.62	49.73	71.82
	11.06	33.16	55.24	77.36
	16.56	38.68	60.78	82.88
	22.12	44.20	66.32	88.40
Thick- ness, in Ins.	1 16 8 1 4 1 16	2 1 2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0	्रांक स्ट्रम् च्या स्ट्रम्	**************************************

(Continued).
FOOT
LINEAL
PER
PLATES
STEEL
OF
WEIGHTS OF STEEL PLATES PER LINEAL FOOT (contin

			<del></del>	· · · · · · · · · · · · · · · · · · ·	
	₩ <del>4</del>	.16 .32 .48 .64	8	.961.44 1.061.60 1.171.76 1.281.92	.69 1.38 2.07 .751.49 2.23 .80 1.60 2.39 .85 1.70 2.55
	72	1.93.84.	.53 .74 .85	.96 1.06 1.28 1.28	$\begin{array}{c} 69  1.38  2.07 \\ .75  1.49  2.23 \\ .80  1.60  2.39 \\ .85  1.70  2.55 \end{array}$
	7-	.05 11.05 12.05	9. 8. 8. 4. E.	.531. .591. .641.	85.88 88.88
	74"	15.73 31.46 47.20 62.92	78.62 94.40 110.1 125.8	141.5 157.2 173.0 188.7	204.4 220.2 235.9 251.6
	72″	15.29 30.59 45.92 61.18	76.48 91.84 107.2 192.4	137.8 153.0 168.3 183.7	198.9 214.2 229.5 244.8
	,,02	14.86 29.72 44.64 59.44	74.32 89.28 104.1 119.0	133.9 148.7 163.6 178.6	193.4 208.3 223.2 238.0
	68′′	14.44 28.88 43.36 57.76	70.08 72.24 84.16 86.72 98.16101.1 12.2 115.6	130.1 144.5 158.9 173.4	187.8 202.4 216.8 231.2
	,,99	14.02 28.04 42.08 56.08		126.2 140.2 154.2 168.3	182.3 196.4 210.4 224.4
	64"	13.60 27.20 40.80 54.40	68.00 81.60 95.20 108.8	122.4 136.0 149.6 163.2	176.8 190.4 204.0 217.6
	95,,	13.18 26.36 39.50 52.72	65.88 79.08 92.24 105.4	118.6 131.8 145.0 158.2	171.2 184.4 197.6 210.8
	,,09	12.75 25.50 38.24 51.00	63.76 76.56 89.28 102.0	114.8 127.5 140.3 153.1	165.7 178.5 191.3 204.0
	28,,	12.32 24.64 36.96 49.28	61.60 74.00 86.28 98.56	1111.0 123.2 135.5 147.9	160.2 172.6 184.9 197.2
	56"	11.90 23.80 35.68 47.60	59.51 71.44 83.30 95.20	107.1 119.0 130.9 142.8	154.7 166.6 178.5 190.4
	54"	11.47 22.96 34.40 45.92	57.36 68.88 80.34 91.84	103.3 114.7 126.2 137.8	149.2 160.7 172.2 183.6
	52"	11.05 22.12 33.12 44.24	55.24 66.32 77.37 88.40	99.46 110.5 121.6 132.6	143.6 154.7 165.8 176.8
	50″	10.63 21.26 31.92 42.52	53.12 63.76 74.40 85.03	95.62 106.2 116.9 127.5	138.1 148.8 159.4 170.0
	48′′	10.20 20.40 30.64 40.80	51.04 61.20 71.44 81.60	91.84 [02.0 [12.2 [22.4	132.6 142.8 153.0 163.2
Phiot	ness, in Ius.	48 44 10 Ept	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 14 1 16 1 16	142 L

-
e
~
.3
72
3
ರ
_
_
FOOT
$\mathcal{O}$
+
7
$\vdash$
1
-4
-
4
-
0
0:
-
70
F 3
1
$\triangleleft$
. 🛪
$\Box$
PLATES PER LINEAL
1
1
0
-
H
70
2
H
1
75
WEIGHTS OF STEEL ]
I
>
5
•

13"	.37	1.86	3.35	5.20
	.75	2.23	3.72	5.20
	1.11	2.60	4.09	5.38
	1.49	2.98	4.47	5.95
12/1	35. 1.28 1.28	1.59 1.92 2.23 2.55	2.87 3.19 3.51 3.83	4.14 4.47 4.78 5.10
174	.53 .08 .00 .106	1.33 1.59 1.86 2.12	2.65 2.92 3.19	3.45 4.14 4.84 3.72 4.47 5.20 3.99 4.78 5.58 4.25 5.10 5.95
1,"	25.	1.06	1.92	2.76 3.45 4.14 4.84
	45.	1.28	2.12	2.98 3.72 4.47 5.20
	78.	1.49	2.34	3.19 3.99 4.78 5.58
	78.	1.70	2.55	3.40 4.25 5.10 5.95
100″	21.26	106.2	191.2	276.2
	42.59	127.5	212.5	297.5
	63.84	148.8	233.8	318.7
	85.04	170.0	255.0	340.0
,,86	20.84	104.1	187.4	270.6
	41.68	125.0	208.9	291.5
	62.56	145.8	229.1	312.4
	83.36	166.6	250.0	333.2
,,96	20.40	102.1	183.7	265.2
	40.80	192.4	204.0	285.6
	61.28	142.9	224.5	306.0
	81.60	163.2	244.8	326.4
94"	20.00	99.92 102.1	179.8	259.6
	39.99	119.9 122.4	199.8	279.6
	59.92	139.9 142.9	219.8	299.7
	79.98	159.8 163.2	239.8	319.6
92"	19.55	97.76	176.0	254.1
	39.11	117.4	195.5	273.7
	58.58	136.9	215.1	293.3
	78.22	156.4	234.6	312.8
,,06	19.13	95.60	172.1	248.7
	38.26	114.8	191.3	267.8
	57.36	133.9	210.4	286.9
	76.52	153.0	229.5	306.0
88	18.69	93.44	168.2	243.1
	37.38	112.2	187.0	261.8
	56.16	130.9	205.6	280.5
	74.76	149.6	224.4	299.2
//98	18.28	91.36	164.5	237.5
	36.56	109.7	182.8	255.6
	54.88	127.9	201.0	274.2
	73.12	146.2	219.4	292.4
84"	17.84	89.28	160.6	232.0
	35.68	107.1	178.6	250.0
	53.60	125.0	196.3	267.8
	71.36	142.8	214.2	285.6
85″	17.42	87.10	156.9	226.6
	34.84	104.6	174.2	244.0
	52.32	122.0	191.7	261.4
	69.68	139.4	209.1	278.8
80′′	17.00	82.88 84.96	153.1	221.0
	34.00	99.48102.0	170.0	238.0
	51.04	116.0 119.0	187.0	255.0
	68.00	132.6 136.0	204.0	272.0
78″	16.58 33.16 49.72 66.32		149.2 165.7 182.3 198.9	215.5 232.0 248.6 265.2
1.91	16.16	80.78	145.4	209.9
	32.32	96.90	161.5	226.1
	48.40	113.1	177.7	242.3
	64.64	129.2	193.8	258.4
Thick- ness, in Ins.	1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	23 10 12 12 12 12 12 12 12 12 12 12 12 12 12	25 16 21 16 11 16	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -

### AREAS OF FLATS.

Thickness in Inches.	1"	114"	11/1	13"	2"	21"	2½"	2 ³ / ₄	3′′
$\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{16}$	.063 .125 .188 .250	.078 .156 .234 .313	.094 .188 .281 .375	.109 .219 .328 .438	.125 .250 .375 .500	.141 .281 .422 .563	.156 .313 .469 .625	.172 .344 .516 .688	.188 .375 .563 .750
-5 3 8 7 16	.313 .375 .438 .500	.391 .469 .547 .625	.469 .563 .656 .750	.547 .656 .766 .875	.625 .750 .875 1.00	.703 .844 .984 1.13	.781 .938 1.09 1.25	.859 1.03 1.20 1.38	.938 1.13 1.31 1.50
5 8 116 34	.563 .625 .688 .750	.703 .781 .859 .938	.844 .938 1.03 1.13	.984 1.09 1.20 1.31	1.13 1.25 1.38 1.50	1.27 1.41 1.55 1.69	1.41 1.56 1.72 1.88	1.55 1.72 1.89 2.06	1.69 1.88 2.06 2.25
1 1 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	.813 .875 .938 1.00	1.02 1.09 1.17 1.25	1.22 1.31 1.41 1.50	1.42 1.53 1.64 1.75	1.63 $1.75$ $1.88$ $2.00$	1.83 1.97 2.11 2.25	2.03 2.19 2.34 2.50	2.23 2.41 2.58 2.75	2.44 2.63 2.81 3.00
$egin{array}{c} oldsymbol{1}rac{1}{16} \ oldsymbol{1}rac{1}{8} \ oldsymbol{1} ho^3_{16} \ oldsymbol{1}rac{1}{4} \end{array}$	1.06 1.13 1.19 1.25	1.33 1.41 1.48 1.56	1.59 1.69 1.78 1.88	1.86 1.97 2.08 2.19	2.13 2.25 2.38 2.50	2.39 2.53 2.67 2.81	2.66 2.81 2.97 3.13	2.92 3.09 3.27 3.44	3.19 3.38 3.56 3.75
$egin{array}{c} {f 1}_{16}^{-5} \ {f 1}_{16}^{3} \ {f 1}_{16}^{7} \ {f 1}_{2}^{1} \end{array}$	1.31 1.38 1.44 1.50	1.64 1.72 1.80 1.88	1.97 2.06 2.16 2.25	2.30 2.41 2.52 2.63	2.63 2.75 2.88 3.00	2.95 3.09 3.25 3.38	3.28 3.44 3.59 3.75	3.61 3.78 3.95 4.13	3.94 4.13 4.31 4.50
$egin{array}{c} {f 1}_{16}^{9} \\ {f 1}_{8}^{5} \\ {f 1}_{16}^{11} \\ {f 1}_{4}^{3} \\ \end{array}$	1.56 1.63 1.69 1.75	1.95 2.03 2.11 2.19	2.34 2.44 2.53 2.63	2.73 2.84 2.95 3.06	3.13 3.25 3.38 3.50	3.52 3.66 3.80 3.94	3.91 4.06 4.22 4.38	4.30 4.47 4.64 4.81	4.69 4.88 5.06 5.25
$\begin{array}{c} 1\frac{1}{6} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	1.81 1.88 1.94 2.00	2.27 2.34 2.42 2.50	2.72 2.81 2.01 3.00	3.17 3.28 3.39 3.50	3.63 3.75 3.88 4.00	4.08 4.22 4.36 4.50	4.53 4.69 4.84 5.00	4.98 5.16 5.33 5.50	5.44 5.63 5.81 6.00
		1	-	·				'	

### AREAS OF FLATS.

(Continued.)

31/1	4"	41/1	5 · /	51 "	6 "	61/1	7"	71/2
.219 .438 .656 .875	.250 .500 .750 1.00	.281 .563 .844 1.13	.313 .625 .938 1.25	.344 .688 1.03 1.38	1.13	.406 .813 1.22 1.63	.438 .875 1.31 1.75	
1.09 1.31 1.53 1.75	1.25 1.50 1.75 2.00	1.41 1.69 1.97 2.25	1.56 1.88 2.19 2.50	1.72 2.06 2.41 2.75	1.88 2.25 2.63 3.00	2.03 2.44 2.84 3.25	2.19 $2.63$ $3.06$ $3.50$	$\frac{2.81}{3.28}$
1.97 2.19 2.41 2.63	2.25 2.50 2.75 3.00	2.53 2.81 3.09 3.38	2.81 3.13 3.44 3.75	3.09 3.44 3.78 4.13	3.38 3.75 4.13 4.50	3.66 4.06 4.47 4.88	3.94 4.38 4.81 5.25	4.22 4.69 5.16 5.63
2.84 3.06 3.28 3.50	3.25 $3.50$ $3.75$ $4.00$	3.66 3.94 4.22 4.50	4.06 4.38 4.69 5.00	4.47 4.81 5.16 5.50	4.88 5.25 5.63 6.00	5.28 5.69 6.09 6.50	5.69 6.13 6.56 7.00	6.09 6.56 7.03 7.50
3.72 3.94 4.16 4.38	4.25 4.50 4.75 5.00	4.78 5.06 5.34 5.63	5.31 5.63 5.94 6.25	5.84 6.19 6.53 6.88	6.38 6.75 7.13 7.50	6.91 7.31 7.72 8.13	7.44 7.88 8.31 8.75	7.97 8.44 8.91 9.38
4.59 4.81 5.03 5.25	5.25 5.50 5.75 6.00	5.91 6.19 6.47 6.75	6.56 6.88 7.19 7.50	7.22 7.56 7.91 8.25	7.88 8.25 8.63 9.00		10.06	$10.31 \\ 10.78$
5.47 5.69 5.91 6.13	6.25 6.50 6.75 7.00	7.03 7.31 7.59 7.88	7.81 8.13 8.44 8.75	9.28	$9.75 \\ 10.13$	$10.56 \\ 10.97$	11.38 11.81	12.19 12.66
6.34 6.56 6.78 7.00	7.25 7.50 7.75 8.00	8.16 8.44 8.72 9.00	9.69	10.31 10.66	$11.25 \\ 11.63$	12.19 12.59	13.13 13.56	$14.06 \\ 14.53$
	$\begin{array}{c} .219 \\ .438 \\ .656 \\ .875 \\ \hline \\ 1.09 \\ 1.31 \\ 1.53 \\ 1.75 \\ \hline \\ 1.97 \\ 2.19 \\ 2.63 \\ \hline \\ 2.84 \\ 3.06 \\ 3.28 \\ 3.50 \\ \hline \\ 3.72 \\ 3.94 \\ 4.16 \\ 4.38 \\ \hline \\ 4.59 \\ 4.81 \\ 5.03 \\ 5.25 \\ \hline \\ 5.47 \\ 5.69 \\ 5.91 \\ 6.13 \\ \hline \\ 6.34 \\ 6.56 \\ 6.78 \\ \hline \end{array}$	.219 .250 .438 .500 .656 .750 .875 1.00 1.09 1.25 1.31 1.50 1.53 1.75 1.75 2.00 1.97 2.25 2.19 2.50 2.41 2.75 2.63 3.00 2.84 3.25 3.06 3.50 3.28 3.75 3.50 4.00 3.72 4.25 3.94 4.50 4.16 4.75 4.38 5.00 4.59 5.25 4.81 5.50 5.03 5.75 5.25 6.00 5.47 6.25 5.69 6.50 5.91 6.75 6.13 7.00 6.34 7.25 6.56 7.50 6.78 7.75	.219       .250       .281         .438       .500       .563         .656       .750       .844         .875       1.00       1.13         1.09       1.25       1.41         1.31       1.50       1.69         1.53       1.75       1.97         1.75       2.00       2.25         1.97       2.25       2.53         2.19       2.50       2.81         2.41       2.75       3.09         2.63       3.00       3.38         2.84       3.25       3.66         3.06       3.50       3.94         3.28       3.75       4.22         3.50       4.00       4.50         3.72       4.25       4.78         3.94       4.50       5.06         4.16       4.75       5.34         4.81       5.50       5.63         4.59       5.25       5.91         4.81       5.50       6.19         5.03       5.75       6.47         5.25       6.00       6.75         5.47       6.25       7.03         5.69       6.50	.219         .250         .281         .313           .438         .500         .563         .625           .656         .750         .844         .938           .875         1.00         1.13         1.25           1.09         1.25         1.41         1.56           1.31         1.50         1.69         1.88           1.53         1.75         1.97         2.19           1.75         2.00         2.25         2.50           1.97         2.25         2.53         2.81           2.19         2.50         2.81         3.13           2.41         2.75         3.09         3.44           2.63         3.00         3.38         3.75           2.84         3.25         3.66         4.06           3.06         3.50         3.94         4.38           3.28         3.75         4.22         4.69           3.50         4.00         4.50         5.00           3.72         4.25         4.78         5.31           3.94         4.36         5.06         5.63           4.16         4.75         5.34         5.94	.219         .250         .281         .313         .344           .438         .500         .563         .625         .688           .656         .750         .844         .938         1.03           1.09         1.25         1.41         1.56         1.72           1.31         1.50         1.69         1.88         2.06           1.53         1.75         1.97         2.19         2.41           1.75         2.00         2.25         2.50         2.75           1.97         2.25         2.53         2.81         3.09           2.19         2.50         2.81         3.13         3.44           2.41         2.75         3.09         3.44         3.78           2.63         3.00         3.38         3.75         4.13           2.84         3.25         3.66         4.06         4.47           3.06         3.50         3.94         4.38         4.81           3.28         3.75         4.22         4.69         5.16           3.50         4.00         4.50         5.00         5.50           3.72         4.25         4.78         5.31	.219         .250         .281         .313         .344         .375           .656         .750         .844         .938         1.03         1.13           .875         1.00         1.13         1.25         1.38         1.50           1.09         1.25         1.41         1.56         1.72         1.88           1.31         1.50         1.69         1.88         2.06         2.25           1.53         1.75         1.97         2.19         2.41         2.63           1.75         2.00         2.25         2.50         2.75         3.00           1.97         2.25         2.53         2.81         3.09         3.38           2.19         2.50         2.81         3.13         3.44         3.75           2.41         2.75         3.09         3.44         3.78         4.13           2.63         3.00         3.38         3.75         4.13         4.50           2.84         3.25         3.66         4.06         4.47         4.88           3.06         3.50         3.94         4.38         4.81         5.25           3.28         3.75         4.22	.219         .250         .281         .313         .344         .375         .406           .438         .500         .563         .625         .688         .750         .813           .656         .750         .844         .938         1.03         1.13         1.22           .875         1.00         1.13         1.25         1.38         1.50         1.63           1.09         1.25         1.41         1.56         1.72         1.88         2.03           1.31         1.50         1.69         1.88         2.06         2.25         2.44           1.53         1.75         1.97         2.19         2.41         2.63         2.84           1.75         2.00         2.25         2.50         2.75         3.00         3.25           1.97         2.25         2.53         2.81         3.09         3.38         3.66           2.19         2.50         2.81         3.13         3.44         3.75         4.06           2.19         2.50         2.81         3.13         3.44         3.75         4.06           2.19         2.50         2.81         3.13         3.44         3.75	.219         .250         .281         .313         .344         .375         .406         .438           .438         .500         .563         .625         .688         .750         .813         .875           .656         .750         .844         .938         1.03         1.13         1.22         1.31           .875         1.00         1.13         1.25         1.38         1.50         1.63         1.75           1.09         1.25         1.41         1.56         1.72         1.88         2.03         2.19           1.31         1.50         1.69         1.88         2.06         2.25         2.44         2.63           1.53         1.75         1.97         2.19         2.41         2.63         2.84         3.06           1.97         2.25         2.53         2.81         3.09         3.38         3.66         3.94           2.19         2.50         2.81         3.13         3.44         3.75         4.06         4.38           2.41         2.75         3.09         3.44         3.78         4.13         4.47         4.88         5.25           2.84         3.25         3.66

### AREAS OF FLATS.

(Continued.)

Thickness, in inches.	8″	81/1	9″	9½"	10″	101/1	11"	11½"	12"
16 18 3 16	$ \begin{array}{r} .500 \\ 1.00 \\ 1.50 \\ 2.00 \end{array} $	.531 1.06 1.59 2.13	.563 1.13 1.69 2.25	.594 1.19 1.78 2.38	.625 1.25 1.88 2.50	.656 1.31 1.97 2.63	.688 1.38 2.06 2.75	.719 1.44 2.16 2.88	.750 1.50 2.25 3.00
5 16 3 8 7 16	2.50 3.00 3.50 4.00	2.66 3.19 3.72 4.25	2.81 3.38 3.94 4.50	2.97 3.56 4.16 4.75	3.13 3.75 4.38 5.00	$\begin{vmatrix} 3.94 \\ 4.59 \end{vmatrix}$	3.44 4.13 4.81 5.50	3.59 4.31 5.03 5.75	3.75 4.50 5.25 6.00
58 16 34	4.50 5.00 5.50 6.00	4.78 5.31 5.84 6.38	5.06 5.63 6.19 6.75	5.34 5.94 6.53 7.13	5.63 6.25 6.88 7.50	$\begin{vmatrix} 6.56 \\ 7.22 \end{vmatrix}$	6.19 $6.88$ $7.56$ $8.25$	6.47 7.19 7.91 8.63	8.25
1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	6.50 7.00 7.50 8.00		7.31 7.88 8.44 9.00	7.72 8.31 8.91 9.50	$8.75 \\ 9.38$	9.19	$9.63 \\ 10.31$	9.34 $10.06$ $10.78$ $11.50$	$10.50 \\ 11.25$
$\begin{bmatrix} 1_{\frac{1}{8}}^{\frac{1}{16}} \\ 1_{\frac{1}{8}}^{\frac{1}{16}} \\ 1_{\frac{1}{4}}^{\frac{1}{6}} \end{bmatrix}$	9.50	$9.56 \\ 10.09$	$10.13 \\ 10.69$	$10.69 \\ 11.28$	11.25 $11.88$	11.16 11.81 12.47 13.13	$\begin{vmatrix} 12.38 \\ 13.06 \end{vmatrix}$	12.94 $13.66$	$13.50 \\ 14.25$
$egin{array}{c} oldsymbol{1}_{rac{3}{8}}^{rac{5}{16}} \ oldsymbol{1}_{rac{1}{2}}^{rac{5}{16}} \ oldsymbol{1}_{rac{1}{2}}^{rac{5}{16}} \end{array}$	$11.00 \\ 11.50$	$11.69 \\ 12.22$	$12.38 \\ 12.94$	$13.06 \\ 13.66$	13.75 $14.38$		15.13 15.81	$15.81 \\ 16.53$	$16.50 \\ 17.25$
$egin{array}{c} oldsymbol{1} rac{1}{16} \ oldsymbol{1} rac{5}{8} \ oldsymbol{1} rac{1}{16} \ oldsymbol{1} rac{3}{4} \end{array}$	$\begin{vmatrix} 13.00 \\ 13.50 \end{vmatrix}$	$13.81 \\ 14.34$	$14.63 \\ 15.19$	$15.44 \\ 16.03$	16.25 $16.88$	17.06 $17.72$	17.88 18.50	18.69 $19.41$	18.75 19.50 20.25 21.00
$egin{array}{c} 1_{18}^{13} \ 1_{8}^{7} \ 1_{16}^{15} \ 2 \ \end{array}$	15.00 $15.50$	15.94 16.47	16.88 17.44	17.81 18.41	$18.75 \\ 19.38$	$\frac{19.69}{820.34}$	20.63 $21.31$	$21.56 \\ 22.28$	21.75 22.50 23.25 24.00

### AREAS,

IN SQUARE INCHES, FOR ONE HOLE,

To be deducted from gross area of rivetted plates or shapes to obtain net area.

Thickness					Diame	eter of	Hole	•			
of Metal, inches.	1//	26"	<u>5</u> /	11/1 16	3//	13// 16	7//	$\frac{15}{16}$	1 ′	116	$1\frac{1}{8}''$
16 18 16 14	.03 .06 .09 .13	.04 .07 .11 .14	.04 .08 .12 .16	.04 .09 .13 .17	.05 .09 .14 .19	.05 .10 .15 .20	.05 .11 .16 .22	.06 .12 .18 .23	.06 .13 .19 .25	.07 .13 .20 .27	.07 .14 .21 .28
$\frac{\frac{5}{16}}{\frac{3}{8}}$	.16 .19 .22 .25	.18 .21 .25 .28	.20 .23 .27 .31	.21 .26 .30 .34	.23 .28 .33 .38	.25 .30 .36 .41	.27 .33 .38 .44	.29 .35 .41 .47	.31 .38 .44 .50		.35 .42 .49 .56
58 16 16 34	.28 .31 .34 .38	.32 .35 .39 .42	.35 .39 .43 .47	.39 .43 .47 .52	.42 .47 .52 .56		.49 .55 .60	.53 .59 .64 .70	.56 .63 .69	.66	.63 .70 .77 .84
7 16 15 15 16 1	.41 .44 .47 .50	.46 .49 .53 .56	.51 .55 .59 .63	.64	.61 .66 .70	.66 .71 .76 .81	.71 .77 .82 .88	.76 .82 .88 .94			$\frac{.98}{1.05}$
$\begin{bmatrix} 1_{16}^{1} \\ 1_{8}^{1} \\ 1_{16}^{3} \\ 1_{4}^{1} \end{bmatrix}$	.53 .56 .59 .63	.63	.66 .70 .74 .78	.77	.80 .84 .89	.91	$\frac{.98}{1.04}$	1.00 1.05 1.11 1.17	$\frac{1.13}{1.19}$	$\frac{1.20}{1.26}$	1.27 1.34
$\begin{array}{c c} 1_{156}^{5} \\ 1_{8}^{3} \\ 1_{16}^{7} \\ 1_{2}^{1} \end{array}$	.66 .69 .72 .75	.77 .81	.82 .86 .90 .94	.95	$\frac{1.03}{1.08}$	$\frac{1.12}{1.17}$	$\frac{1.20}{1.26}$	1.23 $1.29$ $1.35$ $1.41$	1.38 $1.44$	$\frac{1.46}{1.53}$	$1.55 \\ 1.62$
$\begin{array}{c} 1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4} \end{array}$	.78 .81 .84	.91	$\frac{1.02}{1.05}$	1.12	$\frac{1.22}{1.27}$	$\frac{1.32}{1.37}$	$1.42 \\ 1.47$	1.52 $1.58$	$\begin{bmatrix} 1.63 \\ 1.69 \end{bmatrix}$	1.73 1.79	$\begin{array}{c} 1.76 \\ 1.83 \\ 1.90 \\ 1.97 \end{array}$
$\begin{bmatrix} 1\frac{1}{1}\frac{3}{6} \\ 1\frac{7}{8} \\ 1\frac{1}{1}\frac{5}{6} \\ 2 \end{bmatrix}$	94	$1.05 \\ 1.09$	$\frac{1.17}{1.21}$	1.25 $1.29$ $1.33$ $1.38$	$\frac{1.41}{1.45}$	1.52 $1.57$	1.64 $1.70$	1.76 $1.82$	1.88 1.94	1.99 $2.06$	

When holes are punched the diameter of the hole should be taken as  $\frac{1}{8}$ " greater than the diameter of the rivet or bolt. For drilled holes the diameter may be taken as  $\frac{1}{16}$ " greater than rivet or bolt.

# WEIGHT PER SQUARE FOOT OF SHEETS OF WROUGHT IRON, STEEL, COPPER, AND BRASS.

	THICKNESS BY BIRMINGHAM GAUGE.									
No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.					
0000	.454	18.22	18.46	20.57	19.43					
000	.425	17.05	17.28	19.25	18.19					
00	.38	15.25	15.45	17.21	16.26					
0	.34	13.64	13.82	15.40	14.55					
1	.3	12.04	12.20	13.59	12.84					
$\tilde{2}$	.284	11.40	11.55	12.87	12.16					
3	.259	10.39	10.53	11.73	11.09					
4	.238	9.55	9.68	10.78	10.19					
5	.22	8.83	8.95	9.97	9.42					
6	.203	8.15	8.25	9.20	8.69					
7	.18	7.22	7.32	8.15	7.70					
8	.165	6.62	6.71	7.47	7.06					
9	.148	5.94	6.02	6.70	6.33					
10	.134	5.38	5.45	6.07	5.74					
11	.12	4.82	4.88	5.44	5.14					
12	.109	4.37	4.43	4.94	4.67					
13	.095	3.81	3.86	4.30	4.07					
14	.083	3.33	3.37	3.76	3.55					
15	.072	2.89	2.93	3.26	3.08					
16	.065	2.61	2.64	2.94	2.78					
17	.058	2.33	2.36	2.63	2.48					
18	.049	1.97	1.99	2.22	2.10					
19	.042	1.69	1.71	1.90	1.80					
20	.035	1.40	1.42	1.59	1.50					
21	.032	1.28	1.30	1.45	1.37					
22	.028	1.12	1.14	1.27	1.20					
23	.025	1.00	1.02	1.13	1.07					
24	.022	.883	.895	1.00	.942					
25	.02	.803	.813	.906	.856					
26	.018	.722	.732	.815	.770					
27	.016	. 642	.651	.725	.685					
28	.014	.562	.569	.634	.599					
29	.013	.522	.529	.589	.556					
30	.012	.482	.488	.544	.514					
31	.01	.401	.407	.453	.428					
32	.009	.361	.366	.408	.385					
33	.008	.321	.325	.362	.342					
34	.007	.281	.285	.317	.300					
35	.005	.201	.203	.227	.214					
Specifi	ic Gravity	7.704	7.806	8.698	8.218					
	nt Cubic ft		487.75	543.6	513.6					
	at Cubic in.	.2787	.2823	.3146	.2972					
8										

# WEIGHT PER SQUARE FOOT OF SHEETS OF WROUGHT IRON, STEEL, COPPER, AND BRASS.

THICKNESS BY AMERICAN GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.
0000	.46	18.46	18.70	20.84	19.69
000	.4096	16.44	16.66	18.56	17.53
00	.3648	14.64	14.83	16.53	15.61
0	.3249	13.04	13.21	14.72	13.90
ĺ	.2893	11.61	11.76	13.11	12.38
$\frac{1}{2}$	.2576	10.34	10.48	11.67	11.03
3	.2294	9.21	9.33	10.39	9.82
4	.2043	8.20	8.31	9.26	8.74
5	.1819	7.30	7.40	8.24	7.79
6	.1620	6.50	6.59	7.34	6.93
7	. 1443	5.79	5.87	6.54	6.18
8	.1285	5.16	5.22	5.82	5.50
9	.1144	4.59	4.65	5.18	4.90
10	.1019	4.09	4.14	4.62	4.36
11	.0907	3.64	3.69	4.11	3.88
12	.0808	3.24	3.29	3.66	3.46
13	.0720	2.89	2.93	3.26	3.08
14	.0641	2.57	2.61	2.90	2.74
15	.0571	2.29	2.32	2.59	2.44
16	.0508	2.04	2.07	2.30	2.18
17	.0453	1.82	1.84	$\frac{2.05}{2.05}$	1.94
18	.0403	1.62	1.64	1.83	1.73
19	.0359	1.44	1.46	1.63	1.54
20	.0320	1.28	1.30	1.45	1.37
21	.0285	1.14	1.16	1.29	1.22
22	.0253	1.02	1.03	1.15	1.08
23	.0226	.906	.918	1.02	.966
24	.0201	.807	.817	.911	.860
25	.0179	.718	:728	.811	.766
26	.0159	.640	.648	.722	.682
27	.0142	.570	.577	.643	.608
28	.0126	.507	.514	.573	.541
29	.0113	.452	.458	.510	.482
30	.0100	.402	.408	.454	.429
31	.0089	.358	.363	.404	.382
32	.0080	.319	.323	.360	.340
33	.0071	.284	.288	.321	.303
34	.0063	.253	.256	.286	.270
35	.0056	.225	.228	.254	.240

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wire should always state the weight per  $\square$  foot or the thickness in thousandths of an inch.

## DIFFERENT STANDARDS FOR WIRE GAUGE IN USE IN THE U. S.

DIMENSIONS IN DECIMAL PARTS OF AN INCH.

	Dinibitor	J113 III D				
Number	American, or	Birm-	Washburn	Trenton	United	Old
of	Brown	ingham,	& Moen Mnfg. Co.,	Iron Co.,	States	English,
Wire	& Sharma	or Stubs'.	Worcester,	Trenton,	Standard.	from Brass Mfrs. List.
Gauge.	Sharpe.	Stubs.	Mass.	N. J.		MIIIS, LIST.
000000			10		ACOME	
000000			.46	45	.46875	
00000	AC	454	.43	.45	.4375	
0000	.46	.454		.36	.40625	
000	.3648	.425	.362 $.331$	.33	.375 .34375	
00	.32495	.34	.307	.305	.3125	
1	.2893	.3	.283	.285	.28125	
$\frac{1}{2}$	.25763	.284	$\begin{array}{c c} .263 \\ .263 \end{array}$	.265	.26563	
3	.22942	.259	.244	.245	.25	
4	.20431	.238	.225	.225	.23438	
5	.18194	.22	207	.205	.21875	
6	.16202	.203	.192	.19	.20313	
7	.14428	.18	.177	.175	.1875	
8	.12849	.165	.162	.16	.17188	
9	.11443	.148	.148	.145	.15625	
10	.10189	.134	.135	.13	.14063	
111	.090742	.12	.12	.1175	.125	
12	.080808	.109	.105	.105	.10938	
13	.071961	.095	.092	.0925	.09375	
14	.064034	.083	.08	.08	.07813	.083
15	.057068	.072	.072	.07	.07031	.072
16	.05082	.065	.063	.061	.0625	.065
17	.045257	.058	.054	. 0525	.05625	.058
18	.040303	.049	.047	.045	.05	.049
19	.03539	.042	.041	. 039	.04375	.04
20	.031961	.035	.035	.034	.0375	.035
21	.028462	.032	.032	.03	.03438	.0315
22	.025347	.028	.028	.027	.03125	.0295
23	.022571	.025	.025	.024	.02813	.027
24	.0201	.022	.023	.0215	.025	.025
25	.0179	.02	.02	.019	.02188	.023 $.0205$
26	.01594	.018	.018	.018	.01875	.0205
27 28	0.014195 $0.012641$	.016	.017	.017	.01719	.01675
28	.012041	.014	.016	.015	.01303	.0155
30	.011237	.013	.013	.013	.0125	.01375
31	.008928	.01	.0135	.013	.01094	.01225
32	.003928	.009	.0133	.013	.01016	.01125
33	.00708	.008	.013	.011	.00938	.01025
34	.006304	.007	.01	.01	.00859	.0095
35	.005614	.005	.0095	.009	.00781	.009
30						
<b>_</b>						

### WIRE—IRON, STEEL, COPPER, BRASS.

### Weight of 100 Feet in Pounds.

BIRMINGHAM WIRE GAUGE.

No. of	PER 100 LINEAL FEET.								
Gauge.	Iron.	Steel.	Copper.	Brass.					
0000 000 00 0 1 2 3 4 5 6 7 8 9 10 11 12 13	54.62 47.86 38.27 30.63 23.85 21.37 17.78 15.01 12.82 10.92 8.586 7.214 5.805 4.758 3.816 3.148 2.392	55.13 48.32 38.63 30.92 24.07 21.57 17.94 15.15 12.95 11.02 8.667 7.283 5.859 4.803 3.852 3.178 2.414	62.39 54.67 43.71 34.99 27.24 24.41 20.3 17.15 14.65 12.47 9.807 8.241 6.63 5.435 4.359 3.596 2.732	58.93 51.64 41.28 33.05 25.73 23.06 19.18 16.19 13.84 11.78 9.263 7.783 6.262 5.133 4.117 3.397 2.58					
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	1.826 1.374 1.119 .8915 .6363 .4675 .3246 .2714 .2079 .1656 .1283 .106 .0859 .0678 .0519 .0448 .0382 .0265 .0215 .017 .013	1.843 1.387 1.13 .9 .6423 .472 .3277 .274 .2098 .1672 .1295 .107 .0867 .0685 .0524 .0452 .0385 .0267 .0217 .0171 .0131	2.085 1.569 1.279 1.018 .7268 .534 .3709 .31 .2373 .1892 .1465 .1211 .0981 .0775 .0593 .0511 .0436 .0303 .0245 .0194 .0148	1.969 1.482 1.208 .9618 .6864 .5043 .3502 .2929 .2241 .1788 .1384 .1144 .0926 .0732 .056 .0483 .0412 .0286 .0231 .0183 .014					
36	.0042	.0043	.0048	.0046					

# WROUGHT-IRON WELDED TUBES, FOR STEAM, GAS, OR WATER.

1% inch and below, Butt Welded; proved to 300 lbs. per square inch, Hydraulic Pressure. 1% inch and above, Lap Welded; proved to 500 lbs. per square inch, Hydraulic Pressure.

TABLE OF STANDARD SIZES. - MORRIS, TASKER & CO.

No. of Threads per inch of Screw	28844111111 28844111111 24444
Weight per foot of Length.	1. 126. 1. 243. 1. 423. 1. 423. 1. 126. 1. 170. 2. 258. 2. 659. 2. 659. 2. 659. 2. 674. 3. 664. 12. 492. 12. 492. 14. 564. 18. 767. 28. 348. 28. 348. 36. 641.
Length of Pipe containing I cubic ft.	Fect. 2500. 1385. 1385. 1550. 1550. 1550. 1560. 1560. 1560. 1560. 1560. 1560. 1560. 1560. 1560. 1560. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660. 1660.
External Area.	Inches. 129 236 2378 2388 1354 2388 44.30 6.491 15.904 19.635 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.299 24.
Internal Area.	Inches. . 0572 . 1041 . 1916 . 3448 . 5333 . 5333 4 . 785 4 . 785 4 . 788 9 . 887 1 . 730 1 . 990 1 . 900 1 .
Length of Pipe per Cart. outside Surface.	Feet. 9.44 9.44 5.657 4.502 8.637 9.94 9.44 9.301 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.503 9.50
Length of Pipe per D foot inside Surface.	Feet. 14.15 10.50 7.67 6.13 4.635 8.779 2.778 2.371 1.245 1.245 1.077 1.077 1.077 1.077 1.478 848 848 848 848 848 848 848 848 848
External Circum- ference.	Inches. 1.272 1.699 2.121 2.652 3.299 4.134 6.215 5.215 5.215 6.215 7.461 11.996 11.996 11.996 11.996 12.766 12.366 14.137 15.708 30.433 33.772
Internal Circum- ference.	Inches. 848. 1.144. 1.144. 1.152. 1.957. 2.580. 8.292. 8.292. 8.357. 1.957. 1.957. 1.957. 1.957. 1.958. 1.146. 1.158. 1.158. 1.958. 1.158. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.958. 1.9
Thickness.	Inches
Actual Outside Diameter.	Inches
Actual Inside Diameter.	Inches. 270 . 364 . 494 . 623 . 824 . 824 . 1.048 . 1.048 . 1.048 . 2.667 . 2.468 . 3.067 . 3.548 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.508 . 4.
Inside Diam- eter.	Inches. 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

# LAP-WELDED AMERICAN CHARCOAL IRON BOILER TUBES.

TABLES OF STANDARD SIZES.

MORRIS, TASKER & CO.

External Diameter.	Internal Diameter.	Thickness.	External Circum- ference.	Internal Cir- cumference.	Length of Pipe per  foot inside surface.	Length of Pipe per Coot outside surface.	Internal Area.	External Area.	Weight per foot.
Inch.	Inch.	Inch.	Inch.	Inch.	Feet.	Feet.	Inch.	Inch.	Lbs.
1	0.856	0.072	3.142	2.689	4.460	3.819	0.575	0.785	0.708
11/4	1.106	0.072	3.927	3.474	3.455	3.056	0.960	1.227	0.9
11/2	1.334	0.083	4.712	4.191	2.863	2.547	1.396	1.767	1.250
13/4	1.560	0.095	5.498		2.448	2.183	1.911	2.405	1.665
2	1.804	0.098	6.283	5.667	2.118	1.909	2.556	3.142	1.981
21/4	2.054	0.098	7.069		1.850	1.698	3.314	3.976	2.238
21/2	2.283	0.109	7.854	7.172	1.673	1.528	4.094	4.909	2.755
$2\frac{3}{4}$	2.533	0.109	8.639			1.390	5.039	5.940	3.045
3	2.783	0.109	9.425	8.743	1.373	1.273	6.083	7.069	3.333
31/4	3.012	0.119	10.210	9.462	1.268	1.175	7 125	8.296	3.958
3½	3.262	0.119		10.248	1.171	1.091	8.357	9.621	4.272
33/4	3.512	0.119	11.781		1.088	1.018	9.687	11.045	4.590
4	3.741	0.130	12.566		1.023	0.955	10.992	12.566	5.320
41/2	4.241		14.137		0.901	0.849	14.126	15.904	6.010
5	4.72	0.140	15.708		0.809	0.764	17.497	19.635	7.226
6 7	5.699	0.151	18.849		0.670	0.637	25.509	28.274	9.346
	6.657	0.172	21.991		0.574	0.545	34.805	38.484	12.435
8 9	7.636	0.182	25.132		0.500	0.478	45.795	50.265	15.109
9	8.615	0.193	28.274		0.444	0.424	58.291	63.617	18.002
10	9.573	0.214	31.416	30.074	0.399	0.382	71.975	78.540	22.19

### WROUGHT-IRON WELDED TUBES.

EXTRA STRONG.

Nominal Diameter.	Actual Outside Diameter.	Thickness. Extra Strong.	Thickness. Double Extra Strong.	Actual Inside Diameter. Extra Strong	Actual Inside Diam. Double Extra Strong
1/4 3/4 3/4 1 11/4 11/2 2 21/2 3 3/4 4	.405 .54 .675 .84 1.05 1.315 1.66 1.9 2.375 2.875 3.5 4.	.100 .123 .127 .149 .157 .182 .194 .203 .221 .280 .304 .321	.298 .314 .364 .388 .406 .442 .560 .608 .642 .682	.205 .294 .421 .542 .736 .951 1.272 1.494 1.933 2.315 2.892 3.358 3.818	.244 .422 .587 .884 1.088 1.491 1.755 2.284 2.716 3.136
•					

### SPIKES, NAILS AND TACKS.

	STANDA	RD STE		STEEL WIRE SPIKES.				
		Com	mon.	Finis	hing.	JIEEE	WILL C	or reco.
Sizes.	Length.	Diam., inches.	No. per pound.	Diam., inches.	No. per pound.	Length.	Diam., inches.	No. per pound.
2d 3d 4d 5d	1" 1¼" 1½" 1¾"	.0524 $.0588$ $.0720$ $.0764$	1060 640 380 275	.0453 $.0508$ $.0508$ $.0571$	1558 913 761 500	$3'' \ 3\frac{1}{2}'' \ 4'' \ 4\frac{1}{2}''$	.1620 .1819 .2043 .2294	41 30 23 17
6d 7d 8d 9d	$ \begin{array}{c c}     \hline     2'' \\     \hline     2_{\frac{1}{4}}'' \\     2_{\frac{1}{4}}'' \\     2_{\frac{3}{4}}''   \end{array} $	.0808 .0858 .0935 .0963	$ \begin{array}{r}     \hline                                $	.0641 .0641 .0720 .0720	350 315 214 195	$ \begin{array}{c c} \hline 5'' \\ 5\frac{1}{2}'' \\ 6'' \\ 6\frac{1}{2}'' \end{array} $	.2576 .2893 .2893 .2249	$ \begin{array}{c c}  & 13 \\  & 11 \\  & 10 \\  & 7\frac{1}{2} \end{array} $
10d 12d 16d 20d	$ \begin{array}{c c} 3'' \\ 3_{4}^{1}'' \\ 3_{2}^{1}'' \\ 4'' \end{array} $	.1082 .1144 .1285 .1620	77 60 48 31	.0808 .0808 .0907 .1019	137 127 90 62	7" 8" 9"	.2249 .3648 .3648	$ \begin{array}{c c} \hline 7 \\ 5 \\ 4\frac{1}{2} \end{array} $
30d 40d 50d 60d	$ \begin{array}{c c} \hline 4\frac{1}{2}'' \\ 5'' \\ 5\frac{1}{2}'' \\ 6'' \end{array} $	.1819 .2043 .2294 .2576	22 17 13 11					

### WOOD SCREWS.

No.	Diam.	No.	Diam.	No.	Diam.	No.	Diam.	No.	Diam.
0	.056	6	.135	12 13	.215	18 19	.293	24 25	.374 .387
$\frac{1}{2}$	.082	8	$\frac{.143}{.162}$	$\frac{13}{14}$	.241	$\frac{10}{20}$	.321	$-\frac{26}{26}$	.401
3	.096	9	.175	15	.255	21	.334	27	.414
4	.109	10	.188	16	.268	22	.347	28	.427
5	.122	11	.201	17	.281	23	.361	29 30	.440

### WROUGHT SPIKES.

Number to a keg of 150 lbs.

L'gth, inch.	½ inch. No.	5 inch. No.	³inch. No.	L'gth, inch.	¼inch. No.	$ \frac{5}{16} $ in.	³ / ₈ inch.	⁷ / ₁₆ in. No.	½ inch. No.
3 3½ 4 4½ 5 6	2250 1890 1650 1464 1380 1292	1208 1135 1064 930 868	742 570	7 8 9 10 11 12	1161	662 635 573	482 455 424 391	445 384 300 270 249 236	306 256 240 222 203 180

### NAILS AND SPIKES.

Size, Length, and Number to the Pound.

ORI	INARY.		CLIN	NCH.	FINISHING.					
Size.	Length.	No. to Lb.	Length.	No. to Lb.	Size.	Length.	No. to Lb.			
2 ^d 3 4 5 6 7 8	1" 11" 11" 113" 134" 21" 21" 21" 214" 3"	800 400 300 200 150 120 85 75 60	$2^{\frac{1}{2}}$ $2^{\frac{1}{4}}$ $2^{\frac{1}{2}}$ $2^{\frac{3}{4}}$ $3^{\frac{1}{4}}$	152 133 92 72 60 43	4 ^d 5 6 8 10 12 20	$\begin{array}{c} 1_{\frac{3}{2}} \\ 1_{\frac{3}{2}} \\ 1_{\frac{3}{4}} \\ 2 \\ 2_{\frac{1}{2}} \\ 3 \\ 3_{\frac{5}{2}} \\ 3_{\frac{7}{8}} \\ 3_{\frac{7}{8}} \end{array}$	384 256 204 102 80 65 46			
10 12	3'' 3'''		60 50	60 50	60 50	60 50	FEN	ICE.		CORE.
16 20 30 40 50 60	$\begin{bmatrix} 3\frac{1}{4}'' \\ 3\frac{1}{2}'' \\ 4'' \\ 4\frac{1}{2}'' \\ 5'' \\ 6'' \end{bmatrix}$	40 20 16 14 11 8	$egin{array}{cccccccccccccccccccccccccccccccccccc$	96 66 56 50 40	6 ^d 8 10 12	$\begin{array}{c} 2\\2\\2\frac{1}{2}\\3\frac{1}{8}\\3\frac{1}{4}\\4\frac{1}{4}\end{array}$	143 68 60 42			
L	IGHT.		SPIKES.		20 30 40	$ \begin{array}{c c} 3\frac{3}{4} \\ 4\frac{1}{4} \\ 4\frac{3}{4} \end{array} $	25 18 14			
4 ^d 5 6	$1_{8}^{''}$ $1_{4}^{3}$ $2$	373 272 196	$\begin{array}{c} 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \end{array}$	19 15 13	WHWHL	$2\frac{1}{2}$ $2\frac{1}{4}$	69 72			
В	RADS.		$egin{array}{c c} 5 & 10 \\ 5\frac{1}{2} & 9 \\ 6 & 7 \\ \hline \end{array}$		SLATE.					
6 ^d 8 10 12	$egin{array}{c} 2' \ 2^{1/2} \ 2^{3/4} \ 3^{1/2} \ \end{array}$	163 96 74 50	BO.		3 ^d 4 5 6	$egin{pmatrix} 1_{156}'' \ 1_{16}^{7} \ 1_{34}^{3} \ 2 \end{bmatrix}$	288 244 187 146			
			TAC	KS.						
Size. Len	gth. to I	b. Siz	e. Leng	gth. No I	D. Size.	Length.	No. to Lb.			
$\begin{bmatrix} 1 \text{ oz.} & \frac{1}{8} \\ 1\frac{1}{2} & \frac{1}{4} \\ 2\frac{1}{2} & \frac{1}{4} \\ 3 & \frac{3}{8} \end{bmatrix}$	1600 1060 800 66 644 533	66   6 00   8 00   10	OZ. $\frac{7}{16}$	5 400 266 200 5 160 133	36   16 00   18 00   20	$\begin{array}{c} \frac{13}{16} \\ \frac{7}{8} \\ \frac{15}{16} \\ 1 \\ 1 \\ \frac{1}{16} \end{array}$	1143 1000 888 800 727			

### WINDOW GLASS.

Number of Lights per Box of 50 Feet.

### ROOFING SLATE.

### General Rule for the Computation of Slate.

A square of slating is 100 sq. ft. of finished roofing. Slating is usually laid so that the third slate laps the first slate by three inches. To compute the number of slates of a given size, required to cover a square of roof; subtract three inches from the length of the slate, multiply the remainder by the width of the slate and divide by 2; the result is the number of sq. ins. of roof covered per slate; divide 14,400 (the number of sq. ins. in a square) by the number so found, and the result will be the number of slates required for a square.

Weight per Cubic Foot, - 174 Pounds.

### Weight per Square Foot.

Thickness Weight	18	_3 16	1/4	38	1 2	<u>5</u>	$\frac{3}{4}$	1 inch.
Weight	1.81	2.71	3.62	5.43	7.25	9.06	10.87	14.5 lbs.

# TABLE OF SIZES AND NUMBER OF SLATE IN ONE SQUARE.

Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.
6×12 7 12 8 12 9 12 10 12 12 12 7 14 8 14 9 14 10 14 12 14	533 457 400 355 320 266 374 327 291 261 218	8×16 9 16 10 16 12 16 9 18 10 18 11 18 12 18 14 18 10 20 11 20	277 246 221 184 213 192 174 160 137 169 154	12×20 14 20 11 22 12 22 14 22 12 24 14 24 16 24 16 26 16 26	141 121 137 126 108 114 98 86 89 78
2					•0

### CAPACITY OF CISTERNS OR TANKS,

In Gallons, for Each Foot in Depth.

Diameter in Feet.	Gallons.	Diameter in Feet.	Gallons.
2.	23.5	9.	475.87
2.5	36.7	9.5	553.67
3.	52.9	10.	587.5
3.5	71.96	11.	710.9
4.	94.02	12.	846.4
4.5	119.	13.	992.9
5.	146.8	14.	1,151.5
5.5	177.7	15.	1,321.9
6.	211.6	20.	2,350.0
6.5	248.22	25.	3,670.7
7.	287.84	30.	5,287.7
7.5	330.48	35.	7,189.
8.	376.	40.	9,367.2
8.5	424.44	45.	11,893.2

The American standard gallon contains 231 cubic inches, or 8½ pounds of pure water. A cubic foot contains 62.3 pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by .433. Each 27.72 inches of depth gives a pressure of one pound to the square inch.

### SKYLIGHT AND FLOOR GLASS.

Weight per Cubic Foot, - 156 Pounds.

### Weight per Square Foot.

Thickness Weight	1/8	3	$\frac{1}{4}$	3 8	$\frac{1}{2}$	<u>5</u>	3.4	1 inch.
Weight	1.62	2.43	3.25	4.88	6.50	8.13	9.75	13 lbs.

### FLAGGING.

Weight per Cubic Foot, - 168 Pounds.

Weight	per	Square	Foot.
--------	-----	--------	-------

Thickness	1	2	3	4	5	6	7	8 inch.
Weight	14	28	42	56	70	84	98	112 lbs.

### NOTES ON BRICKWORK.

In ordinary brickwork, one cubic foot of wall will require 21 bricks of 8 in.  $\times 2\frac{1}{2}$  in.  $\times 3\frac{1}{2}$  in.

For 1000 ordinary bricks is required I barrel of good lime, 2 cartloads of ordinary sharp sand.

One brick as above weighs 4 lbs., dry; if perfectly soaked in water, 5 lbs. It will absorb 1 lb. or one pint of water.

Edgewise arches will require about 7 bricks per square foot of floor, and endwise arches will require about 14 bricks of the size given above.

For I cubic yard of concrete is required I barrel of cement, 2 barrels of good sharp sand, I cubic yard of broken stone.

# TRANSVERSE STRENGTH OF BUILDING STONES.

b =width of stone, in inches.

d = thickness of stone, in inches.

l= length of span, in inches.

The safe uniformly distributed loads, in tons of 2000 lbs., for a factor of safety of 10, can be obtained by multiplying the coefficients, given in the table, by  $\frac{\delta d^2}{I}$ 

	Coefficients.
Bluestone	0.18
Granite	0.12
Limestone	0.10
Sandstone	0.08
Slate	0.36

Thus, a granite lintel, 24 inches wide and 12 inches thick, spanning an opening of 48 inches would sustain a safe load of

$$\frac{24 \times 144}{48} \times 0.12 = 8.64$$
 tons.

If the loads are concentrated at the center of the span, the safe load will be one-half the safe uniform load given by the table.

### NOTES ON STEEL AND IRON.

Wrought iron weighs 480 lbs. per cubic foot. A bar, I in. square and 3 ft. long, weighs, therefore, exactly 10 lbs. Hence:

The sectional area, in sq. ins. = the weight per foot  $\times \frac{3}{10}$ . The weight per foot, in lbs. = sectional area  $\times \frac{10}{3}$ .

Steel weighs 490 lbs. per cubic foot, or 2 per cent. greater than wrought iron. Hence for steel:

The sectional area, in sq. ins. = weight per foot  $\div$  3.4 The weight per foot in lbs. = sectional area  $\times$  3.4 The melting-points of iron and steel are about as follows:

Wrought Iron3,000	0° Fahrenheit
Cast Iron	000 "
Steel	000 "

The welding heat of wrought iron is 2,700° Fahrenheit.

The contraction of a wrought-iron rod in cooling is about equivalent to  $\frac{1}{10000}$  of its length for a decrease of 15° Fahr., and the strain thus induced is about *one ton* (2240 lbs.) for every square inch of sectional area in the bar.

For a rod of the lengths given below, the contraction will be as follows:

Length of	rod in	feet	10	20	30	40	50	100	<b>1</b> 50
Contrac'n in	inches	for <b>15</b> °	.012	.024	.036	.048	.060	.120	.180
66	**	150°	.120	.240	.360	.480	.600	1.200	1.800
66	66	100°	.080	.160	. 240	.320	.400	.800	1.200

Contraction and expansion being equal the pressure per square inch induced by heating or cooling is as follows:

For temperatures varying by 15° Fahr.:

Variation .	15	30	45	60	<b>7</b> 5	105	120	150	degrees.
	,				_				
Pressure .	1	2	3	4	5	7	8	10	tons.

# AVERAGE ULTIMATE STRENGTHS OF MATERIALS.

Lbs. per square inch.

	Tension.	ion.	Ö	Compression.	٦.	Tra	Transverse.	Shea	Shearing.	
TIMBERS.			With	With Grain.		Extreme				
	With Grain.	Across Grain.	End bearing.	Cols. under 15 Diams.	Across Grain.	fiber stress,	Modulus of Elasticity.	With Grain.	Across Grain.	
White oak	10,000	2,000	7,000	4,500	2,000	6,000	1,100,000	800	4,000	
White pine	2,000	, 200	5,500	3,500	800	4,000	1,000,000	400	2,000	
Southern, Long-Leaf, or Georgia yellow pine.	12,000	009	8,000	5,000	1,400	2,000	1,700,000	009	5,000	
Douglass, Oregon and vellow fir	12,000	•	8,000	6,000	1,200	6,500	1,400,000	009		
Washington fir or pine \(\right)\) red fir	10,000	•	:		•	5,000		:	:	
Northern or Short-leaf vellow pine	9,000	200	0,000	4,000	1,000	6,000	1,200,000	400	4,000	
Red pine	9,000	200	6,000	4,000	800	5,000	1,200,000	:	:	
Norway pine	8,000	:	6,000	4,000	800	4,000	1,200,000	:	:	
Canadian (Ottawa) white pine	10,000	:		5,000	:	:		350	:	
Canadian (Ontario) red pine	10,000	:	:	5,000		5,000	1,400,000	400	:	
Spruce and Eastern fir	8,000	200	6.000	4,000	200	4,000	1,200,000	400	3,000	
Hemlock	6,000	:	. :	4,000	009	3,500	900,000	350	2,500	
Cypress	6,000	:	6,000	4,000	200	5,000	900,000	:	:	
Cedar	8,000	:	6,000	4,000	200	5,000	700,000	:	1,500	
Chestnut	9,000	:	:	5,000	006	5,000	1,000,000	009	1,500	
California redwood.	2,000	:	•	4,000	800	4,500	700,000	400		
California spruce	:	:	:	4,000		5,000	1,200,000	:		

For quiescent loads, as in buildings, divide above values by the following factors; Tension, 10; Compression, 5; Transverse, 6; Shearing, 5.

# OF MATERIALS (continued). STRENGTHS Lbs. per square inch. AVERAGE ULTIMATE

27,000,000 26,000,000 8,000,000 14,000,000 10,000,000 11,000,0009,000,00014,000,0004,500,000 18,000,00025,000,000 10,000,00015,000,000Modulus of Elasticity. Modulus of Rupture. 22,000 30,000 40,000 44,000 48,000 53,000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shearing. 18,000 40,000 30,000 . . . . . . . . . . . . . . . . . . . . . . . . . . 27,000 26,000 6,000 22,000 10,000 30,000 24,000 40,000 6,000 10,000 27,000 Elastic Limit. 16,000. . . . . . . . . . . . Tension. 32,00030,000 24,000 48,00080,000Compression. (20,000)(30,000)(40,000)12,000 30,000 80,000 46,000 48,000 20,000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rerolled bars..... Copper, bolts ..... unannealed ..... Iron, cast chains ..... corrugated ..... phosphor ..... Tobin ..... " unannealed ..... unannealed ..... aluminum..... manganese METALS. wrought, shapes .... Aluminum, commercial wire, annealed wire, annealed ... wire, annealed Brass, cast..... gun metal.. Gold, cast ..... Bronze, ,, " **9** ,, 99

Compression values enclosed in parentheses indicate loads producing 10% reduction in original lengths.

# AVERAGE ULTIMATE STRENGTHS OF MATERIALS (continued).

Lbs. per square inch.

METALS.	Compression.	Tension.	Elastic Limit.	Shearing.	Modulus of Rupture.	Modulus of Elasticity.
Lead, cast		2,000	1,000		:	1,000,000
" pipe	:	1,600			:	
Silver, cast	:	40,000	4,000		:	10,000,000
Steel, castings	70,000	70,000	40,000	000,000	20,000	30,000,000
" structural, 0.10% carbon	56,000	56,000	30,000	48,000	54,000	29,000,000
" 0.15% "	64,000	64,000	33,000	50,000	60,000	29,000,000
wire, annealed	:	80,000	40,000			29,000,000
" unannealed	:	120,000	60,000	:	:	30,000,000
" " crucible	:	180,000	80,000		:	30,000,000
" for suspension bridges	:	200,000	90,000	•	:	30,000,000
special tempered	•	300,000			:	
Tin. cast	(0000)	3,500	1,800	:	4,000	4,000,000
Zinc, cast	(50,000)	5,000	4,000		7,000	13,000,000
MISCELLANEOUS:		,				
Flax yarn	:	25,000	:	:	:	:
Glass, common green	20,000	3,000	3,000		4,000	8,000,000
" flooring	10,000	3,000	:		3,000	
wire, for skylights		:	5,000		5,000	
Leather, ox	:	4,000			:	240,000
Rope, hemp	:	8,000		:	:	
manila	:	9,000			:	
Silk, fiber	:	5,000	:		:	1,300,000

Compression values enclosed in parentheses indicate loads producing 10% reduction in original lengths.

### AVERAGE ULTIMATE STRENGTHS OF MATERIALS

Lbs. per Square Inch.

(Continued).

MATERIAL		Т	Modulus
MATERIAL.	Compression.	I ension.	Rupture.
D			
Building Stones:	40 400		0 200
Bluestone	13,500	1,400	2,700
Granite, average	15,000	600	1,800
" Connecticut	12,000		
" New Hampshire	15,000		1,500
" Massachusetts	16,000		1,800
" New York	15,000		
Limestone, average	7,000	1,000	1,500
" Hudson River, N. Y.	17,000		
" Ohio	12,000		1,500
Marble, average	8,000	700	
" Vermont	8,000	700	1,200
Sandstone, average	5,000	150	1,200
6 New Tercey	12,000		650
" New Jersey " New York			1,700
New York	10,000	100	700
" Ohio	9,000	100	
Slate	10,000	10,000	5,000
Stonework	(10 Strength	of	Stone.)
BRICKS:	1 000		
Bricks, light red	1,000	40	
" good common	10,000	200	600
" best hard	12,000	400	800
" Phila. pressed	6,000	200	600
Brickwork, common (lime			
mortar)	1,000	50	
Brickwork, good (cement and	<b>'</b>		
lime mortar)	1,500	100	
Brickwork, best (cement mortar).	2,000	300	,
Terra Cotta	5,000		
" " work	2,000		
CEMENTS, ETC.:	7,000		
Cement, Rosendale, 1 month old.	1,200	200	200
" Portland, I " "	2,000	400	400
" Rosendale, I year old.	2,000	300	400
" Rosendale, I year old. " Portland, I " "	3,000	500	800
			100
Mortar, lime, I year old	400	50	200
" lime & Rosendale, I y. old	600	75	200
Mortar, Rosendale cement, I	1 000	105	200
year old	1,000	125	300
Mortar, Portland cement, I y. old.	2,000	250	600
Concrete, Portland, 1 month old	1,000	200	100
" Rosendale, I " "	500	100	50
" Portland, I year old.	2,000	400	150
" Rosendale, I " ".	1,000	200	75
C. C		of ultimo	to

Safe strengths of Stone, Brick and Cement,  $\frac{1}{10}$  to  $\frac{1}{30}$  of ultimate.

### WEIGHTS OF VARIOUS SUBSTANCES.

NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Alcohol, commercial	52
Aluminum	166
Antimony, cast	418
Apple	47
Ash, American, perfectly dry	38
" Canadian, " "	38
Asphalt, pavement composition	130
" refined	93
" Trinidad, natural state	80
Basalt	181
Beech	48
Birch	43
Bismuth, cast	614
Bluestone	160
Boxwood, perfectly dry	62
Brass	523
Brick, best pressed	135 to 150
" common hard	110 " 125
" fire	140 " 150
" soft, inferior	100
Brickwork, pressed brick	112 to 140
" ordinary	110 " 112
Bronze	552
Calcite, transparent	170
Cedar	39 to 41
Cement, Louisville	50
" Portland	80 to 100
" Rosendale	56 " 60
Chalk	156
Charcoal	15 to 30
Cherry, perfectly dry	42
Chestnut, " "	41
Clay, potters', dry	119
" dry, loose	63
Coal, anthracite, broken	52 to 56
" moderately shaken	56 " 60
" solid	93
" heaped bushel, loose	(77 to 83)
" bituminous, solid	84
" broken, loose	54
" heaped bushel, loose	(74)
Coke, of good coal, loose	30 to 50
Concrete	120 " 140
Copper, cast	552

### WEIGHTS OF VARIOUS SUBSTANCES (Continued).

NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Cork Earth, dry, loose  " " moderately rammed " moist, moderately packed	15 · 72 to 80 90 " 100 90 " 100
" as a soft flowing mud	104 " 112
Elm, Canadian, dry	47 250 58
FatFeldsparFir, New England	166 40
Flint	162 163
" flint	186 158
Gneiss, common	168 96
" Hornblendic	$175 \\ 1204 \\ 170$
Gravel. Greenstone, trap.	117 to 125 187
" quarried, loose	107 56
Gutta Percha	61 26
Hickory, " "	48 to 53 200 " 220 57
Ice India rubber Iron, cast	58 450
" rolled wrought	480 485
Isinglass	70 114
Lard Lead, commercial cast	59 712 83
Lignum Vitæ, perfectly dry Lime, quick " " loose	95 53 to 59
" " thoroughly shaken	75 170
" quarried, loose	96 110
	8

### WEIGHTS OF VARIOUS SUBSTANCES (Continued).

NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
I amount	10
Locust	46
Magnesia, carbonate	150
Mahogany, Spanish, perfectly dry	53
Tronduras,	35
Manganese	499
Maple, perfectly dry	42 to 49
Marble	164
Masonry, granite or limestone	165
Tubble	154
	138
Tough mortal rubble	
	125
of sandstone	145
Mercury at 32° Fah	849
Mica	183
Mortar, hardened	90 to 100
Mud, wet, moderately pressed	110 " 130
" " fluid	104 " 120
Naphtha	53
Nickel	488 to 549
Oak, live, perfectly dry	59 " 69
" Canadian	54
winte, perfectly dry	48 to 52
Ted, black, etc	32 '' 45
1cu	52
Oils, whale, olive	57
" of turpentine	54
Peat, dry, unpressed	20 to 30
	55
Pewter	453 33
Pine, Canadian	34
Northern	65
" pitch Southern	45 to 48
" white	25 " 28
Willie	75
Pitch	142
" " in irregular lumps	82
" " ground, loose	56
" " well shaken	64
Platinum	1342
Plumbago	142
Poplar (white wood)	27
Porphyry	170
1 orphyty	1.0
íð	

### WEIGHTS OF VARIOUS SUBSTANCES (Continued).

NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Pumice Stone	56
Quartz, common, pure	$\begin{array}{c} 165 \\ 94 \end{array}$
Redwood, California	23
Rosin	68
Salt, solid	134
" coarse	65
" fine table	80
Sand, pure quartz, dry, loose	90 to 106
" perfectly wet	118 " 129
" sharp, of pure quartz, dry	117
Sandstone, building, dry	144 to 151
" quarried and piled	86
Shale, red or black	$   \begin{array}{c}     162 \\     92   \end{array} $
Silver	655
Slate	160 to 180
Snow, fresh fallen	5 " 12
" solid, saturated with moisture	15 " 50
Soapstone, or Steolite	170 25 to 28
Spruce, perfectly dry	490
Sulphur	125
Sycamore, perfectly dry	37 to 40
Tallow	59
Tar	63
Terra-cotta	110 112
" " masonry work	110 to 120
Tin, cast	462
Traprock, quarried and piled	107
compact	187
Turf, or peat, unpressed	20 to 30 39
Walnut, black, dry	$\frac{39}{62.5}$
" sea	64.08
Wax, bees'	60.5
Whalebone	
Willow	34
Wines Zinc, or Spelter	$\frac{62.3}{438}$
Zine, or Spetter	400
Green timbers $\frac{1}{5}$ to $\frac{1}{2}$ more than dry.	
	8

### WEIGHTS OF MERCHANDISE.

Measurements and weights given are for one case, box, cask, crate, barrel, bale, or bag, etc.

	Measur	ements.	Wei	ghts.
MATERIAL.		Space	Lbs.	Lbs.
WILL DICTED.	Occu		per	per
	Sq. Ft.	Cu. Ft.	Cu. Ft.	oq. Ft.
Cassimeres, woolen, in cases	10.5	28.0	20	52
Cement, American, in barrels	3.8	5.5	59	86
" English, in barrels	3.8	5.5	73	105
Cheese	0.0	9.0	30	91
Corn, in bags	3.6	3.6	$\begin{array}{c c} 31 \\ 12 \end{array}$	$\begin{array}{c c} 31 \\ 64 \end{array}$
Cotton, in bales	$8.1 \\ 1.25$	$\begin{array}{c c} 44.2 \\ 3.13 \end{array}$	40	100
" extra compressed, in bales Crockery, in casks	13.4	42.5	14	52
" in crates	9.9	36.6	40	162
Dress goods, woolen, in cases	5.5	22.0	21	84
Flannels, heavy woolen, in cases	7.1	15.2	22	46
Flour, in barrels	4.1	5.4	40	53
Glass, in boxes			60	
Hay, in bales	5.0	20.0	14	57
" extra compressed, in bales	1.75	5.25	24	72
Hides, raw, in bales	6.0	30.0	23	117
Leather, sole, in bales	12.6	8.9	16 17	22
" " in piles	3.6	4.5	50	63
Lime, in barrels Oats, in bags	3.3	3.6	27	29
Oil, lard, in barrels	4.3	12.3	34	98
Paper, manila	1.0		37	
" newspaper			38	
" super-calendered book			69	
" wrapping			10	
" writing		10.4	64	
Prints, cotton, in cases	4.5	13.4	31	93
Rags, jute butts, in bales	$\frac{2.8}{7}$	$\frac{11.0}{30.0}$	$\begin{vmatrix} 36 \\ 20 \end{vmatrix}$	143 80
" woolen, in bales	$\frac{7.5}{9.2}$	40.0	18	78
" " linen, in bales	8.5	39.5	23	107
Sheetings, bleached cotton, in cases.	4.8	11.4	30	69
Starch, in barrels	3.0	10.5	23	83
Straw, extra compressed, in bales	1.75	5.25	19	57
Sugar, brown, in barrels	3.0	7.5	45	113
Tickings, cotton, in bales	3.3	8.8	37	99
Tin, in boxes	2.7	0.5	278	99
Wheat, in bags	4.2	4.2	39	39
" in bulk		06.0	41	66
Wool, Australian, in bales	5.8 7.5	$\begin{vmatrix} 26.0 \\ 33.0 \end{vmatrix}$	15	66
" Californian, " " " South American, in bales	7.0	$\frac{33.0}{34.0}$	29	143
South American, in bales	1.0	01.0	~	

## WEIGHTS OF FIREPROOFING MATERIALS.

### POROUS TERRA COTTA FLOOR ARCHES.

	Kind of Arc	ch.		Max. Span between Beams, Feet.	Depth of Arch, Inches.	Weight, lbs. per Sq. Ft.
"Excelsio	or" End Co	onstruc " "	ction	5 to 6 6 to 7 7 to 8 8 to 9	8 9 10 12	30 32 34 37
Ordinary "" "" ""	Flat Arch	• • • • • • • • • • • • • • • • • • • •		$\begin{array}{c} 3\frac{1}{2} \text{ to } 4\\ 4 \text{ to } 4\frac{1}{2}\\ 4\frac{1}{2} \text{ to } 5\\ 5\frac{1}{2} \text{ to } 6\\ 6 \text{ to } 6\frac{1}{2}\\ 6\frac{1}{2} \text{ to } 7 \end{array}$	6 7 8 9 10 12	29 33 37 40 43 48
Segmenta "	al Arch (Ho	ollow E	Brick).	3 to 8 5 to 10 6 to 12	4 6 8	20 30 37

### PARTITIONS, FURRING, CEILING, ROOFING.

	Thickness, Inches.	Weight, lbs. per Sq. Ft.
Hollow Brick Partitions	3 4 5 6	15 20 24 28
Porous Terra Cotta Partitions	3 4 5 6	14 18 23 27
Hollow Brick Furring  Porous Terra Cotta Furring  " " Ceiling  " " "	2 2 2 3 4	12 8 12 15 20
Porous Terra Cotta Roofing	2 3 4	12 16 20

### NOTES ON MENSURATION.

Triangle ..... Area =  $\frac{1}{2}$  base  $\times$  altitude.

 $=\frac{1}{2}$  product of two adjacent sides  $\times$  sine of

the included angle.

(Area = base  $\times$  altitude. Parallel-

= product of two adjacent sides × sine of ogram. the included angle.

Trapezoid ... Area  $=\frac{1}{2}$  sum of parallel sides  $\times$  altitude.

Trapezium ... Area = product of diagonals x sine included angle. = sum of areas of composing triangles.

Circle ...... Circumference =  $3.14159 \times diameter$ . Diameter =  $0.31831 \times \text{circumference}$ .

Area =  $3.14159 \times \text{square of radius.}$ =  $0.78540 \times \text{square of diameter.}$ 

Length of an arc = No. of degrees × diameter  $\times$  0.0087267.

Area of sector = length of arc  $\times$  half radius.

Circular Arc

Cylinder,

Pyramid

and

and

Cone.

Cone.

Frustum of

Pyramid



$$m = r - \sqrt{r^2 - \frac{c^2}{4}}$$

$$r = \frac{4m^2 + c^2}{8m}$$

 $0 = 4/r^2 - x^2 - (r - m)$ Ellipse......Circumference (approximately) =  $1.82 \times long$  diameter  $+ 1.32 \times short$  diameter.

Area =  $3.14159 \times \text{product of the semi-axes.}$ 

Parabola ..... Area  $= \frac{2}{3}$  base  $\times$  altitude.

Prism, right Convex surface = perimeter of right section × length of lateral edge. or oblique.

Contents = area of base  $\times$  perpendicular height. Convex surface = perimeter of right section X length.

right or oblique. Contents = area of base × perpendicular height. Convex surface (right pyramid or cone) =  $\frac{1}{2}$  perimeter of base X slant height.

Contents (right or oblique pyramid or cone) =  $\frac{1}{3}$ 

area of base × perpendicular height.

Convex surface (right frustum) = sum of perimeters of bases × ½ slant height.

Contents (right or oblique frustum) =  $\frac{1}{3}$  altitude x sum of upper base, lower base and a mean proportional,

 $= \frac{1}{3}$  alt.  $\left( B + B' + 4 \right/ BB' \right)$ 

Sphere.....Surface = 3.14159 × square of diameter.

Contents = 0.52360 × cube of diameter.

Prismoid .... A prismoid is a solid bounded by six plane sur-

faces, only two of which are parallel. To find the contents; add the areas of the two parallel surfaces and four times the area of a section midway between and parallel to them and multiply the sum by one sixth the altitude.

### CIRCUMFERENCES OF CIRCLES.

Advancing by Eighths.

					1			
Diam- eter.	0	1/8	4	38	1/2	<u>5</u> 8	$\frac{3}{4}$	. <del>7</del> 8
0	.0	.3927	$\begin{array}{c} .7854 \\ 3.927 \\ 7.069 \\ 10.21 \\ 13.35 \\ 16.49 \end{array}$	1.178	1.571	1.963	2.356	2.749
1	3.142	3.534		4.320	4.712	5.105	5.498	5.890
2	6.283	6.676		7.461	7.854	8.246	8.639	9.032
3	9.425	9.817		10.60	10.99	11.39	11.78	12.17
4	12.56	12.96		13.74	14.13	14.53	14.92	15.31
5	15.71	16.10		16.88	17.28	17.67	18.06	18.45
6	18.85	19.24	19.63	20.02	20.42	20.81	21.20	21.60
7	21.99	22.38	22.77	23.17	23.56	23.95	24.34	24.74
8	25.13	25.52	25.92	26.31	26.70	27.09	27.49	27.88
9	28.27	28.66	29.06	29.45	29.84	30.23	30.63	31.02
10	31.41	31.81	32.20	32.59	32.98	33.38	33.77	34.16
11	34.55	34.95	35.34	35.73	36.13	36.52	36.91	37.30
12	37.70	38.09	38.48	38.87	39.27	39.66	40.05	40.45
13	40.84	41.23	41.62	42.02	42.41	42.80	43.19	43.59
14	43.98	44.37	44.76	45.16	45.55	45.94	46.34	46.73
15	47.12	47.51	47.91	48.30	48.69	49.08	49.48	49.87
16	50.26	50.66	51.05	51.44	51.83	52.23	52.62	53.01
17	53.40	53.80	54.19	54.58	54.97	55.37	55.76	56.15
18	56.55	56.94	57.33	57.72	58.12	58.51	58.90	59.29
19	59.69	60.08	60.47	60.87	61.26	61.65	62.04	62.43
20	62.83	63.22	63.61	64.01	64.40	64.79	65.19	65.58
21	65.97	66.36	66.76	67.15	67.54	67.93	68.33	68.72
22	69.11	69.50	69.90	70.29	70.68	71.08	71.47	71.86
23	72.25	72.65	73.04	73.43	73.82	74.22	74.61	75.00
24	75.40	75.79	76.18	76.57	76.97	77.36	77.75	78.14
25	78.54	78.93	79.32	79.71	80.11	80.50	80.89	81.29
26	81.68	82.07	82.46	82.86	83.25	83.64	84.03	84.43
27	84.82	85.21	85.60	86.00	86.39	86.78	87.18	87.57
28	87.96	88.35	88.75	89.14	89.53	89.93	90.32	90.71
29	91.10	91.50	91.89	92.28	92.67	93.07	93.46	93.85
30	94.24	94.64	95.03	95.42	95.82	96.21	96.60	96.99
31	97.39	97.78	98.17	98.57	98.96	99.35	99.75	100.14
32	100.53	100.92	101.32	101.71	102.10	102.49	102.89	103.28
33	103.67	104.07	104.46	104.85	105.24	105.64	106.03	106.42
34	106.81	107.21	107.60	107.99	108.39	108.78	109.17	109.56
35	109.96	110.35	110.74	111.13	111.53	111.92	112.31	112.71
36	113.10	113.49	113.88	114.28	114.67	115.06	115.45	115.85
37	116.24	116.63	117.02	117.42	117.81	118.20	118.60	118.99
38	119.38	119.77	120.17	120.56	120.95	121.34	121.74	122.13
39	122.52	122.92	123.31	123.70	124.09	124.49	124.88	125.27
40	125.66	126.06	126.45	126.84	127.24	127.63	128.02	128.41
41	128.81	129.20	129.59	129.98	130.38	130.77	131.16	131.55
42	131.95	132.34	132.73	133.13	133.52	133.91	134.30	134.70
43	135.09	135.48	135.87	136.27	136.66	137.05	137.45	137.84
44	138.23	138.62	139.02	139.41	139.80	140.19	140.59	140.98
45	141.37	141.76	142.16	142.55	142.94	143.34	143.73	144.12
46	144.51	144.91	145.30	145.69	146.08	146.48	146.87	147.26
47	147.66	148.05	148.44	148.83	149.23	149.62	150.01	150.40
48	150.80	151.19	151.58	151.97	152.37	152.76	153.15	153.55
49	153.94	154.33	154.72	155.12	155.51	155.90	156.29	156.69

### CIRCUMFERENCES OF CIRCLES

Advancing by Eighths.

(Continuea).

		1						
Diam- eter.	.0	i 8	1.	3 ×	1/2	<u>5</u>	34	7 8
50	157.08	157.47	157.87	158.26	158.65	159.04	159.44	159.83
51	160.22	160.61	161.01	161.40	161.79	162.19	162.58	162.97
52	163.36	163.76	164.15	164.54	164.93	165.33	165.72	166.11
53	166.50	166.90	167.29	167.68	168.08	168.47	168.86	169.25
54	169.65	170.04	170.43	170.82	171.22	171.61	172.00	172.40
55	172.79	173.18	173.57	173.97	174.36	174.75	175.14	175.54
56	175.93	176.32	176.72	177.11	177.50	177.89	178.29	178.68
57	179.07	179.46	179.86	180.25	180.64	181.03	181.43	181.82
58	182.21	182.61	183.00	183.39	183.78	184.18	184.57	184.96
59	185.35	185.75	186.14	186.53	186.93	187.32	187.71	188.10
60	188.50	188.89	189.28	189.67	190.07	190.46	190.85	191.24
61	191.64	192.03	192.42	192.82	193.21	193.60	193.99	194.39
62	194.78	195.17	195.56	195.96	196.35	196.74	197.14	197.53
63	197.92	198.31	198.71	199.10	199.49	199.88	200.28	200.67
64	201.06	201.46	201.85	202.24	202.63	203.03	203.42	203.81
65	204.20	204.60	204.99	205.38	205.77	206.17	206.56	206.95
66	207.35	207.74	208.13	208.52	208.92	209.31	209.70	210.09
67	210.49	210.88	211.27	211.67	212.66	212.45	212.84	213.24
68	213.63	214.02	214.41	214.81	215.20	215.59	215.98	216.38
69	216.77	217.16	217.56	217.95	218.34	218.73	219.13	219.52
70	219.91	220.30	220.70	221.09	221.48	221.88	222.27	222.66
71	223.05	223.45	223.84	224.23	224.62	225.02	225.41	225.80
72	226.20	226.59	226.98	227.37	227.77	228.16	228.55	228.94
73	229.34	229.73	230.12	230.51	230.91	231.30	231.69	232.09
74	232.48	232.87	233.26	233.66	234.05	234.44	234.83	235.23
75	235.62	236.01	236.41	236.80	237.19	237.58	237.98	238.37
76	238.76	239.15	239.55	239.94	240.33	240.73	241.12	241.51
77	241.90	242.30	242.69	243.08	243.47	243.87	244.26	244.65
78	245.04	245.44	245.83	246.22	246.62	247.01	247.40	247.79
79	248.19	248.58	248.97	249.36	249.76	250.15	250.54	250.94
80	251.33	251.72	252.11	252.51	252.90	253.29	253.68	254.08
81	254.47	254.86	255.25	255.65	256.04	256.43	256.83	257.22
82	257.61	258.00	258.40	258.79	259.18	259.57	259.97	260.36
83	260.75	261.15	261.54	261.93	262.32	262.72	263.11	263.50
84	263.89	264.29	264.68	265.07	265.47	265.86	266.25	266.64
85	267.04	267.43	267.82	268.22	268.61	269.00	269.39	269.78
86	270.18	270.57	270.96	271.36	271.75	272.14	272.53	272.93
87	273.32	273.71	274.10	274.50	274.89	275.28	275.68	276.07
88	276.46	276.85	277.25	277.64	278.03	278.42	278.82	279.21
89	279.60	279.99	280.39	280.78	281.17	281.57	281.96	282.35
90	282.74	283.14	283.53	283.92	284.31	284.71	285.10	285.49
91	285.89	286.28	286.67	287.06	287.46	287.85	288.24	288.63
92	289.03	289.42	289.81	290.21	290.60	290.99	291.38	291.78
93	292.17	292.56	292.95	293.35	293.74	294.13	294.52	294.92
94	295.31	295.70	296.10	296.49	296.88	297.27	297.67	298.06
95	298.45	298.84	299.24	299.63	300.02	300.42	300.81	301.20
96	301.59	301.99	302.38	302.77	303.16	303.56	303.95	304.34
97	304.73	305.13	305.52	305.91	306.31	306.70	307.09	307.48
98	307.88	308.27	308.66	309.05	309.45	309.84	310.23	310.63
99	311.02	311.41	311.80	312.20	312.59	312.98	313.37	313.77

### AREAS OF CIRCLES.

Advancing by Eighths.

Diam- eter.	0	1/8	1/4	38	$\frac{1}{2}$	<u>5</u>	34	7/8
0	.0	.0122	.0491	.1104	.1963	.3068	.4418	.6013
1	.7854	.9940	1.227	1.485	1.767	2.074	2.405	2.761
2	3.1416	3.546	3.976	4.430	4.908	5.411	5.939	6.492
3	7.068	7.670	8.296	8.946	9.621	10.32	11.04	11.79
4	12.56	13.36	14.18	15.03	15.90	16.80	17.72	18.66
5	19.63	20.63	21.65	22.69	23.76	24.85	25.96	27.10
6	28.27	29.46	30.68	31.92	33.18	34.47	35.78	37.12
7	38.48	39.87	41.28	42.72	44.18	45.66	47.17	48.70
8	50.26	51.85	53.45	55.09	56.74	58.42	60.13	61.86
9	63.61	65.39	67.20	69.03	70.88	72.76	74.66	76.59
10	78.54	80.51	82.51	84.54	86.59	88.66	90.76	92.88
11	95.03	97.20	99.40	101.6	103.9	106.1	108.4	110.7
12	113.1	115.5	117.9	120.3	122.7	125.2	127.7	130.2
13	132.7	135.3	137.9	140.5	143.1	145.8	148.5	151.2
14	153.9	156.7	159.5	162.3	165.1	168.0	170.9	173.8
15	176.7	179.7	182.7	185.7	188.7	191.7	194.8	197.9
16	201.1	204.2	207.4	210.6	213.8	217.1	220.3	223.6
17	227.0	230.3	233.7	237.1	240.5	244.0	247.4	250.9
18	254.5	258.0	261.6	265.2	268.8	272.4	276.1	279.8
19	283.5	287.3	291.0	294.8	298.6	302.5	306.3	310.2
20	314.2	318.1	322.1	326.0	330.1	334.1	338.2	342.2
21	346.4	350.5	354.7	358.8	363.0	367.3	371.5	375.8
22	380.1	384.5	388.8	393.2	397.6	402.0	406.5	411.0
23	415.5	420.0	424.6	429.1	433.7	438.4	443.0	447.7
24	452.4	457.1	461.9	466.6	471.4	476.3	481.1	486.0
25	490.9	495.8	500.7	505.7	510.7	515.7	520.8	525.8
26	530.9	536.0	541.2	546.3	551.6	556.8	562.0	567.3
27	572.6	577.9	583.2	588.6	594.0	599.4	604.8	610.3
28	615.7	621.3	626.8	632.4	637.9	643.5	649.2	654.8
29	660.5	666.2	672.0	677.7	683.5	689.3	695.1	701.0
30	706.9	712.8	718.7	724.6	730.6	736.6	742.6	748.7
31	754.8	760.9	767.0	773.1	779.3	785.5	791.7	798.0
32	804.3	810.5	816.9	823.2	829.6	836.0	842.4	848.8
33	855.3	861.8	868.3	874.9	881.4	888.0	894.6	901.3
34	907.9	914.6	921.3	928.1	934.8	941.6	948.4	955.2
35	962.1	969.0	975.9	982.8	989.8	996.8	1003.8	1010.8
36	1017.9	1025.0	1032.1	1039.2	1046.3	1053.5	1060.7	1068.0
37	1075.2	1082.5	1089.8	1097.1	1104.5	1111.8	1119.2	1126.7
38	1134.1	1141.6	1149.1	1156.6	1164.2	1171.7	1179.3	1186.9
39	1194.6	1202.3	1210.0	1217.7	1225.4	1233.2	1241.0	1248.8
40	1256.6	1264.5	1272.4	1280.3	1288.2	1296.2	1304.2	1312.2
41	1320.3	1328.3	1336.4	1344.5	1352.7	1360.8	1369.0	1377.2
42	1385.4	1393.7	1402.0	1410.3	1418.6	1427.0	1435.4	1443.8
43	1452.2	1460.7	1469.1	1477.6	1486.2	1494.7	1503.3	1511.9
44	1520.5	1529.2	1537.9	1546.6	1555.3	1564.0	1572.8	1581.6
45	1590.4	1599.3	1608.2	1617.0	1626.0	1634.9	1643.9	1652.9
46	1661.9	1670.9	1680.0	1689.1	1698.2	1707.4	1716.5	1725.7
47	1734.9	1744.2	1753.5	1762.7	1772.1	1781.4	1790.8	1800.1
48	1809.6	1819.0	1828.5	1837.9	1847.5	1857.0	1866.5	1876.1
49	1885.7	1895.4	1905.0	1914.7	1924.4	1934.2	1943.9	1953.7

### AREAS OF CIRCLES (Continued).

Advancing by Eighths.

							1	
Diam- eter.	0	1/8	1/4	3/8	1/2	<u>5</u> .	3 4	7 8
50	1963.5	1973.3	1983.2	1993.1	2003.0	2012.9	2022.8	2032.8
51	2042.8	2052.8	2062.9	2073.0	2083.1	2093.2	2103.3	2113.5
52	2123.7	2133.9	2144.2	2154.5	2164.8	2175.1	2185.4	2195.8
53	2206.2	2216.6	2227.0	2237.5	2248.0	2258.5	2269.1	2279.6
54	2290.2	2300.8	2311.5	2322.1	2332.8	2343.5	2354.3	2365.0
55	2375.8	2386.6	2397.5	2408.3	2419.2	2430.1	2441.1	2452.0
56	2463.0	2474.0	2485.0	2496.1	2507.2	2518.3	2529.4	2540.6
57	2551.8	2563.0	2574.2	2585.4	2596.7	2608.0	2619.4	2630.7
58	2642.1	2653.5	2664.9	2676.4	2687.8	2699.3	2710.9	2722.4
59	2734.0	2745.6	2757.2	2768.8	2780.5	2792.2	2803.9	2815.7
60	2827.4	2839.2	2851.0	2862.9	2874.8	2886.6	2898.6	2910.5
61	2922.5	2934.5	2946.5	2958.5	2970.6	2982.7	2994.8	3006.9
62	3019.1	3031.3	3043.5	3055.7	3068.0	3080.3	3092.6	3104.9
63	3117.2	3129.6	3142.0	3154.5	3166.9	3179.4	3191.9	3204.4
64	3217.0	3229.6	3242.2	3254.8	3267.5	3280.1	3292.8	3305.6
65	3318.3	3331.1	3343.9	3356.7	3369.6	3382.4	3395.3	3408.2
66	3421.2	3434.3	3447.2	3460.2	3473.2	3486.3	3499.4	3512.5
67	3525.7	3538.8	3552.0	3565.2	3578.5	3591.7	3605.0	3618.3
68	3631.7	3645.0	3658.4	3671.8	3685.3	3698.7	3712.2	3725.7
69	3739.3	3752.8	3766.4	3780.0	3793.7	3807.3	3821.0	3834.7
70	3848.5	3862.2	3876.0	3889.8	3903.6	3917.5	3931.4	3945.3
71	3959.2	3973.1	3987.1	4001.1	4015.2	4029.2	4043.3	4057.4
72	4071.5	4085.7	4099.8	4114.0	4128.2	4142.5	4156.8	4171.1
73	4185.4	4199.7	4214.1	4228.5	4242.9	4257.4	4271.8	4286.3
74	4300.8	4315.4	4329.9	4344.5	4359.2	4373.8	4388.5	4403.1
75	4417.9	4432.6	4447.4	4462.2	4477.0	4491.8	4506.7	4521.5
76	4536.5	4551.4	4566.4	4581.3	4596.3	4611.4	4626.4	4641.5
77	4656.6	4671.8	4686.9	4702.1	4717.3	4732.5	4747.8	4763.1
78	4778.4	4793.7	4809.0	4824.4	4839.8	4855.2	4870.7	4886.2
79	4901.7	4917.2	4932.7	4948.3	4963.9	4979.5	4995.2	5010.9
80	5026.5	5042.3	5058.0	5073.8	5089.6	5105.4	5121.2	5137.1
81	5153.0	5168.9	5184.9	5200.8	5216.8	5232.8	5248.9	5264.9
82	5281.0	5297.1	5313.3	5329.4	5345.6	5361.8	5378.1	5394.3
83	5410.6	5426.9	5443.3	5459.6	5476.0	5492.4	5508.8	5525.3
84	5541.8	5558.3	5574.8	5591.4	5607.9	5624.5	5641.2	5657.8
85	5674.5	5691.2	5707.9	5724.7	5741.5	5758.3	5775.1	5791.9
86	5808.8	5825.7	5842.6	5859.6	5876.5	5893.5	5910.6	5927.6
87	5944.7	5961.8	5978.9	5996.0	6013.2	6030.4	6047.6	6064.9
88	6082.1	6099.4	6116.7	6134.1	6151.4	6168.8	6186.2	6203.7
89	6221.1	6238.6	6256.1	6273.7	6291.2	6308.8	6326.4	6344.1
90	6361.7	6379.4	6397 1	6414.9	6432.6	6450.4	6468.2	6486.0
91	6503.9	6521.8	6539.7	6557.6	6575.5	6593.5	6611.5	6629.6
92	6647.6	6665.7	6683.8	6701.9	6720.1	6738.2	6756.4	6774.7
93	6792.9	6811.2	6829.5	6847.8	6866.1	6884.5	6902.9	6921.3
94	6939.8	6958.2	6976.7	6995.3	7013.8	7032.4	7051.0	7069.6
95	7088.2	7106.9	7125.6	7144.3	7163.0	7181.8	7200.6	7219.4
96	7238.2	7257.1	7276.0	7294.9	7313.8	7332.8	7351.8	7370.8
97	7389.8	7408.9	7428.0	7447.1	7466.2	7485.3	7504.5	7523.7
98	7543.0	7562.2	7581.5	7600.8	7620.1	7639.5	7658.9	7678.3
99	7697.7	7717.1	7736.6	7756.1	7775.6	7795.2	7814.8	7834.4

### LONG MEASURE.

Inches.	Feet.	Yards.	Fath.	Poles.	Furl.	Mile.	Metres.
1.	= .083	= .02778	=.0139	= .005 =	= .000126	= .0000158	= .0254
12.	1.	.333	.1667	.0606	.00151	.0001894	.3048
36.	3.	1.	.5	.182	.00454	.000568	.9144
72.	6.	2.	1.	.364	.0091	.001136	1.8288
198.	$16\frac{1}{2}$ .	$5\frac{1}{2}$ .	$2\frac{3}{4}$ .	1.	.025	.003125	5.0292
7920.	660.	220.	110.	40.	1.	.125	201.168
63360.	5280.	1769.	880. 3	20.	8.	1.	1609.344

A palm = 3 inches.

A span = 9 inches.

A hand = 4 inches.

A cable's length = 120 fathoms.

### SQUARE MEASURE.

Inches.	Fee	et. Yaı	rds. Perc	hes. Roo	ds. Acre.	Metres.
1.	= .000	694 = .000	772 = .00002	55 = .00000006	64 = .0000001	159 = .000645
144.	1.	.111	. 00367	.0000918	.000023	. 0929
1296.	9.	1.	.0331	.000826	.0002066	.8362
39204.	$272\frac{1}{4}$ .	$30\frac{1}{4}$ .	1.	.025	.00625	25.294
1568160.	10890.	1210.	40.	1.	.25	1011.78
6272640.	43560.	4840.	160.	4.	1.	4047.11

100 square feet = 1 square.

10 square chains = 1 acre.

1 chain wide = 8 acres per mile.

1 hectare = 2.471044 acres.

1 square mile  $\begin{cases} = 27878400 \text{ square feet.} \\ = 3097600 \text{ square yards.} \\ = 640 \text{ acres.} \end{cases}$ 

Acres  $\times .0015625 = \text{square miles}$ .

Square yards  $\times$  .000000323 = square miles.

Acres  $\times$  4840 = square yards.

Square yards  $\times .0002066 = acres$ .

A section of land is 1 mile square, and contains 640 acres.

A square acre is 208.71 ft. at each side; or  $220 \times 198$  ft.

A square  $\frac{1}{2}$ -acre is 147.58 ft. at each side; or 110  $\times$  198 ft.

A square  $\frac{1}{4}$ -acre is 104.355 ft. at each side; or 55  $\times$  198 ft.

A circular acre is 235.504 feet in diameter.

A circular  $\frac{1}{2}$ -acre is 166.527 feet in diameter.

A circular  $\frac{1}{4}$ -acre is 117.752 feet in diameter.

### CUBIC MEASURE.

A cord of wood = 128 cubic feet, being four feet high, four feet wide, and eight feet long.

Forty-two cubic feet = a ton of shipping, British.

Forty cubic feet = a ton of shipping, U. S. A perch of masonry contains  $24\frac{3}{4}$  cubic feet.

### A CUBIC FOOT IS EQUAL TO

1728 cubic inches.

.037037 cubic yard.

.803564 U. S. struck bushel of 2150.42 cubic inches.

3.21426 U. S. pecks.

7.48052 U.S. liquid galls. of 231 cubic inches.

6.42851 U. S. dry galls. 29.92208 U. S. liquid quarts. 25.71405 U. S. dry quarts. 59.84416 U. S. liquid pints. 51.42809 U. S. dry pints. 239.37662 U. S. gills.

.26667 flour barrel of 3 struck bushels.

.23748 U. S. liquid barrel of  $31\frac{1}{2}$  galls.

### MEASURES OF CAPACITY.

### LIQUID MEASURE.

Gill.	Pint.	Quart.	Gallon.	Cubic Inches.	Cubic Metres.
1	.25	.125	.03125 · .125 · .25 · .1.	7.21875	.000118
4	1.	.5		28.875	.000473
8	2.	1.		57.75	.000947
32	8.	4.		231.	.003786

### DRY MEASURE.

Pint.	Ouart. Peck.		Bushel.	Cubic Inches	Cubic Metres.		
Pint.	Quart.	Peck.	Busilei.	Cubic Inches.			
$\frac{1}{2}$	.50	.0625	. 015625 . 03125	$\frac{33.6003}{67.2006}$	.000551		
16	8.	1.	.25	537.605	.008811		
64	32.	4.	1.00	2150.42	.035245		

### AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.

27.343 grains = 1 drachm.

Drachn	ns. Ou	nces. Lbs.	Qrs.	Cwts.	Ton.	Grammes.
1.	= .0	625 = .0039	= .000139	=.000035	=.000001	74 = 1.77189
16.	1.	.0625	.00223	.000558	.000028	28.3502
256.	16.	1.	.0357	.00893	.000447	453.603
7168.	448.	28.	1.	.25	.0125	12700.884
28672.	1792.	112.	4.	1.	. 05	50803.536
573440.	35840.	2240.	80.	20.	1. 1	016070.72

A stone = 14 pounds.

A quintal = 100 pounds.

7000 grains = one avoirdupois pound = 1.21528 troy pounds.

5760 grains = one troy pound = .82285 avoirdupois pounds.

### SURVEYING MEASURE (LINEAL).

Inches	Link	s. Fee	t. Yards	. Chains.	Mile.	Metres.
1.	= .126	= .083	3 = .0278	= .00126 =	.0000158 =	0254
7.9	92 1.	. 66	. 22	.01	.000125	.2012
12.	1.515	1.	. 333	. 01515	.000189	.3048
36.	4.545	3.	1.	. 04545	.000568	.9144
792.	100.	66.	22.	1.	. 0125	20.1168
63360.	8000.	5280.	1760.	80.	1.	1609.344

One knot or geographical mile = 6086.07 feet = 1855.11 metres = 1.1526 statute miles.

One admiralty knot = 1.1515 statute miles = 6080 feet.

# DECIMALS OF AN INCH FOR EACH $\frac{1}{64}$ TH.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 1				1
1     2     .03125     1-16     17     34     .53125       2     4     .0625     1-16     18     36     .546875     9-16       3     5     .078125     19     38     .59375     9-16       3     6     .09375     19     38     .59375     39     .609375     5-8       4     8     .125     1-8     20     40     .625     5-8       5     10     .15625     21     42     .640625     5-8       5     10     .15625     21     42     .65625     5-8       6     12     .1875     3-16     22     44     .640625     5-8       7     14     .21875     23     46     .71875     11-16       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     23     46     .71875     3-4       9     18     .28125     25     50     .78125     3-4       9     18     .28125     25     50     .78125     3-4       10     20     .3125     5-16     26     52     .8125     13-16       11     22 <td>$\frac{1}{32}$ds.</td> <td>$\frac{1}{64}$ths.</td> <td>Decimal.</td> <td>Fraction.</td> <td>$\frac{1}{32}$ds.</td> <td>$\frac{1}{64}$ths.</td> <td>Decimal.</td> <td>Fraction.</td>	$\frac{1}{32}$ ds.	$\frac{1}{64}$ ths.	Decimal.	Fraction.	$\frac{1}{32}$ ds.	$\frac{1}{64}$ ths.	Decimal.	Fraction.
2     4     .0625     1-16     18     36     .5625     9-16       3     6     .09375     19     38     .59375       4     8     .125     1-8     20     40     .625     5-8       5     10     .15625     21     42     .65625     5-8       5     10     .15625     21     42     .65625     11-16       7     14     .21875     3-16     22     44     .6875     11-16       7     13     .203125     23     45     .703125     11-16       7     14     .21875     23     46     .71875     11-16       7     14     .21875     23     46     .71875     3-4       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     23     46     .71875     3-4       9     18     .28125     25     50     .78125       10     20     .3125     5-16     26     52     .8125     13-16       11     21     .328125     27     54     .84375     25     .859375     55     .859375     7-8       12     <	1	1 2 3	.03125		17	34	.53125	
3     6     .09375     19     38     .59375       4     8     .125     1-8     20     40     .625     5-8       9     .140625     20     40     .625     5-8       10     .15625     21     42     .65625     11-16       11     .171875     3-16     22     44     .6875     11-16       13     .203125     23     46     .71875     11-16       7     14     .21875     23     46     .71875     3-4       9     18     .28125     23     46     .71875     3-4       9     18     .28125     25     50     .78125       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     27     54     .84375     3-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     29     58     .90625       12     24     .375     7-16     30     60     .9375     15-16       15     30     .46875     31     .62     .96875     63 <td>2</td> <td></td> <td></td> <td>1-16</td> <td>18</td> <td></td> <td></td> <td>9-16</td>	2			1-16	18			9-16
4     8     .125     1-8     20     39     .609375     5-8       9     .140625     21     42     .65625     5-8       10     .15625     21     42     .65625     11-171875       6     12     .1875     3-16     22     44     .6875     11-16       7     14     .21875     23     46     .71875       15     .234375     23     46     .71875       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     25     50     .78125       10     20     .3125     5-16     26     52     .8125     13-16       11     21     .328125     27     54     .84375     28     13-16       11     22     .34375     28     25     .859375     13-16       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     29     58     .90625       12     24     .375     7-16     30     60     .9375     15-16       15     30     .46875     31     .62 </td <td>9</td> <td>5</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td>	9	5			10			
4     8     .125     1-8     20     40     .625     5-8       9     .140625     21     42     .640625     65625       11     .171875     3-16     22     44     .6875     11-16       7     14     .21875     23     46     .71875     11-16       7     14     .21875     23     46     .71875     3-4       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     25     50     .78125     3-4       9     18     .28125     25     50     .78125     3-4       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     28     55     .859375     7-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     929.875     15-16       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .62     .96875     63     .984375	3	7			19			
5     10     .15625       11     .171875     3-16     21     42     .65625       6     12     .1875     3-16     22     44     .6875     11-16       7     14     .21875     23     45     .703125     .71875       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     25     50     .78125       19     .296875     25     50     .78125       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     28     25     50     .78125     13-16       11     22     .34375     27     54     .84375     13-16       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     29     58     .90625       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     63     .984375	4			1-8	20			5-8
6     11     .171875     3-16     22     43     .671875     11-16       7     14     .21875     23     46     .71875     47     .734375       8     16     .25     1-4     24     48     .75     3-4       9     17     .265625     25     50     .78125       19     .296875     25     50     .78125       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     23     .359375     27     54     .84375       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625       27     .421875     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     31     62     .96875       31     .484375     31     .62     .96875     63     .984375								
6     12     .1875     3-16     22     44     .6875     11-16       7     14     .21875     23     45     .703125     .71875       8     16     .25     1-4     24     48     .75     3-4       9     17     .265625     25     50     .78125     3-4       9     18     .28125     25     50     .78125     3-4       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     23     .359375     3-8     28     56     .875     7-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     31     62     .96875     63     .984375	5				21			
7     14     .21875       15     .234375     23     46     .71875       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     25     50     .78125       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     23     .359375     27     54     .84375     .859375     13-16       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .62     .96875       31     .484375     31     .62     .96875       63     .984375	6			3-16	22			11-16
7     14     .21875     23     46     .71875     .734375     3-4       8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     25     50     .78125     3-4       10     20     .3125     5-16     26     52     .8125     13-16       11     21     .328125     27     54     .84375     3-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625       27     .421875     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     31     62     .96875       31     .484375     31     .62     .96875     63     .984375								
8     15     .234375     1-4     24     47     .734375     3-4       9     17     .265625     25     50     .78125     3-4       9     18     .28125     25     50     .78125     3-16       10     20     .3125     5-16     26     52     .8125     13-16       11     21     .328125     27     54     .84375     3-8     28     56     .875     7-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .62     .96875     63     .984375			.203125		-			
8     16     .25     1-4     24     48     .75     3-4       9     18     .28125     25     50     .78125       19     .296875     51     .796875     13-16       10     20     .3125     5-16     26     52     .8125     13-16       11     22     .34375     23     .359375     27     54     .84375     55     .859375       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     31     62     .96875       31     .484375     63     .984375	7				23			
9     18     .285625     25     50     .78125       10     .296875     51     .796875     13-16       21     .328125     26     52     .8125     13-16       11     22     .34375     23     .359375     27     54     .84375     55     .859375     7-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     62     .96875       31     .484375     31     62     .96875       63     .984375	8			1-4	24			3-4
9     18     .28125     25     50     .78125       10     .296875     .3125     .5-16     26     .52     .8125     13-16       11     .328125     .34375     .23     .359375     .3828125     .84375     .859375     .859375     .859375     .859375     .7-8       12     .326     .40625     .29     .58     .90625     .921875     .921875     .921875     .921875     .9375     .15-16       15     .30     .46875     .31     .484375     .484375     .984375     .984375								
10     19     .296875     5-16     26     51     .796875     13-16       11     21     .328125     27     54     .84375     23     .359375     23     .359375     55     .859375     7-8       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .62     .96875       31     .484375     31     62     .96875       63     .984375								
10         20         .3125         5-16         26         52         .8125         13-16           11         22         .34375         23         .359375         27         54         .84375         55         .859375         7-8           12         24         .375         3-8         28         56         .875         7-8           13         26         .40625         29         58         .90625         59         .921875         15-16           14         28         .4375         7-16         30         60         .9375         15-16           15         30         .46875         31         .484375         31         62         .96875           31         .484375         63         .984375         30         .984375	9				25			
11     21     .328125     27     53     .828125       12     23     .359375     3-8     28     55     .859375       12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     62     .96875       31     .484375     63     .984375	10			5-16	26			13-16
11     22     .34375     23     .359375     3-8     27     54     .84375     .859375     7-8       12     24     .375     3-8     28     56     .875     7-8       25     .390625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       29     .453125     31     62     .96875       31     .484375     31     62     .96875       63     .984375								
12     23     .359375     3-8     28     55     .859375     7-8       13     26     .40625     29     58     .90625       14     28     .4375     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     31     62     .96875       31     .484375     63     .984375		21						
12     24     .375     3-8     28     56     .875     7-8       13     26     .40625     29     58     .90625     59     .921875       14     28     .4375     7-16     30     60     .9375     15-16       29     .453125     31     62     .96875       31     .484375     31     62     .984375	11				27			
13     25     .390625     29     57     .890625       14     28     .421875     7-16     30     60     .9375     15-16       15     30     .46875     31     .484375     31     62     .96875       31     .484375     .484375     .984375	12			3-8	28			7-8
13     26     .40625     29     58     .90625       14     28     .4375     7-16     30     60     .9375     15-16       29     .453125     30     61     .953125     15-16       30     .46875     31     62     .96875       31     .484375     63     .984375								
14     27     .421875     7-16     30     59     .921875     15-16       29     .453125     61     .953125       30     .46875     31     62     .96875       31     .484375     63     .984375	40				20			
14     28     .4375     7-16     30     60     .9375     15-16       29     .453125     61     .953125       30     .46875     31     62     .96875       31     .484375     63     .984375	13				29			
29 .453125 30 .46875 31 .484375 31 62 .96875 63 .984375	14			7-16	30			15-16
15 30 .46875 31 62 .96875 63 .984375								
31 .484375 63 .984375					64			
	15				31			
	16			1-2	32		1.	1
						Ļ		

# DECIMALS OF A FOOT FOR EACH $\frac{1}{32}$ OF AN INCH.

Inches.	r6ths.	Decimal.	Inches.	ı6ths.	Decimal.	Inches.	r6ths.	Decimal.	Inches.	r6ths.	Decimal.
0	0		1	8	.1250	3	0	.2500	4	8	.3750
		.0026	-		.1276		_	.2526			.3776 .3802
1	1	.0052		9	.1302		1	.2552		9	.3802
	_	.0078			.1328			.2578			.3828
	2	.0104		10	.1354		2	.2604		10	.3854
	0	.0130		77	.1380		9	.2630		11	.3880 .3906
	3	.0156 .0182		11	$.1406 \\ .1432$		3	.2656 .2682		11	.3932
	4	.0208		12	.1458		4	.2708		12	.3958
	•	.0234			.1484		•	.2734			.3984
	5	.0234 .0260		13	.1510		5	.2760		13	.4010
		.0286			. 1536			.2786		1	.4036
	6	.0313		14	.1563		6	.2813		14	.4063
	_	.0339			.1589			.2839			.4089
	7	.0365		15	.1615		7	.2865		15	.4115
	8	.0391	2	0	.1641 .1667		8	.2891 .2917	5	0	.4141 .4167
	0	.0417	2	0	.1693		0	.2943	•	0	.4193
	9	.0469		1	.1719		9	.2969		1	.4219
		.0495		_	.1745			.2995		_	. 4245
1	10	.0521		2	.1771		10	.3021		2	.4271 .4297
1		.0547			.1797			.3047	Ì		.4297
	11	.0573		3	.1823		11	.3073		3	.4323
1	10	.0599		4	.1849		10	.3099 .3125		4	.4349
i .	12	.0625 .0651		4	.1875 .1901		12	.3125		4	.4401
	13	.0677		5	.1927		13	.3177		5	.4427
	13	.0703		J	. 1953		10	.3203			.4453
	14	.0729		6	.1979		14	.3229		6	.4479
		.0755			.2005			.3255			.4505
	15	.0781		7	. 2031		15	.3281		7	.4531
-		.0807		0	.2057 .2083			.3307		0	.4557
1	0	.0833		8	.2083	4	0	.3333 .3359		8	.4583 .4609
	1	.0859		9	.2109		1	.3385		9	.4635
	1	.0005		3	.2161		1	.3411			.4661
	2	.0938		10	.2188		2	.3438		10	.4688
		.0964			.2214			. 3464			.4714
1	3	.0990		11	.2240		3	.3490		11	.4740
1		.1016			.2266			.3516		10	.4766
	4	.1042		12	.2292		4	.3542		12	.4792
	-	.1068		10	.2318 .2344		5	.3568		13	.4818
	5	.1094		13	.2344 .2370		9	.3594		15	.4870
	6	.1120		14	.2396		6	.3646		14	.4896
	U	.1172		17	.2422			.3672			.4922
	7	.1198		15	.2448		7	.3698		15	.4948
I.		.1224			.2474			.3724			.4974
80									-		č

# DECIMALS OF A FOOT FOR EACH $\frac{1}{32}$ OF AN INCH (Continued).

ł												
	Inches.	r6ths.	Decimal.									
ı	6	0	.5000	7	8	.6250	9	0	.7500	10	8	.8750
ı		7	.5026		9	.6276		1	.7526 $.7552$		9	.8776
ı		1	.5052 .5078		9	.6302 .6328		1	.7578		9	.8802 $.8828$
ı	1	2	.5104		10	.6354		2	.7604		10	.8854
I			.5130			.6380			.7630			.8880
ı		3	.5156		11	.6406		3	.7656		11	.8906
ł	-	4	.5182 .5208		12	.6432 $.6458$		4	.7682 .7708		12	.8932 $.8958$
ı		-	.5234		1.	.6484		•	.7734			.8984
ı		5	.5260		13	.6510		5	.7760		13	.9010
ı		0	.5286		7.4	.6536		0	.7786		3.4	.9036
		6	.5313 .5339		14	.6563 .6589		6	.7813 .7839		14	.9063
١		7	.5365		15	.6615		7	.7865		15	.9115
١		·	.5391		10	.6641		•	.7891			.9141
١		8	.5417	8	0	.6667		8	.7917	11	0	.9167
I			.5443		4	.6693		0	.7943		7	.9193
١		9	.5469		1	.6719 .6745		9	.7969 .7995		1	.9219 .9245
ı		10	.5521		2	6771		10	.8021		2	.9271
ı			.5547			.6797			.8047			.9297
ı		11	.5573		3	.6823		11	.8073		3	.9323
ı		12	.5599 .5625		4	.6849 $.6875$		12	.8099 .8125		4	. 9349   . 9375
ı		14	.5651		*	.6901		14	.8151		*	.9401
ł		13	.5677		5	6927		13	.8177		5	.9427
I			.5703			. 6953			.8203			.9453
ı		14	.5729		6	.6979		14	.8229		6	.9479
ı		15	.5755 .5781		7	.7005 .7031		15	.8255 $.8281$		7	.9505 .9531
1		10	.5807		•	.7057		10	.8307		'	.9557
ı	7	0	.5833		8	.7083	10	0	.8333		8	.9583
1		1	.5859		0	.7109		4	.8359		9	.9609 .9635
ı		1	.5885 .5911		9	.7135 .7161		1	.8385 .8411		9	.9635
		2	.5938		10	.7188		2	.8438		10	.9688
١			.5964			.7214			. 8464			.9714
-		3	.5990		11	.7240		3	.8490		11	.9740
		4	.6016 .6042		12	.7266 .7292		4	.8516 $.8542$		12	.9766 .9792
		4	.6068		12	.7318		4	.8568		14	.9818
		5	.6094		13	.7344		5	.8594		13	.9844
			.6120			.7370			.8620		71.1	.9870
		6	.6146		14	.7396		6	.8646 .8672		14	.9896 .9922
		7	.6172		15	.7422 .7448		7	.8698		15	.9948
		1	.6198 .6224		10	.7474		1	.8724		10	.9974
-	8			1								8

### INDEX.

Pag	e
Angles, areas of6	8
" effect of increasing thickness of	7
" lithographs of equal leg 2	7
" " unequal leg	ġ
" " canore root 97 9	Q
" square root	1
" properties of 65-6	4
DIODELLES OI	~
" radii of gyration for two, back to back155-15 " rivet spacing for	6
" rivet spacing for	9
sale loads for	2
" sizes of finishing grooves for	7
" standard connection, for I beams and channels . 45-4	7
" weights of	0
Arches, floor, illustrations of	0
" notes on 114-11	8
" safe loads for11	6
" weights of	4
Areas, deduction of, for rivet or bolt holes28	1
" of column sections (see tables of safe loads on columns).	
" Passaic shapes(see shape in question).	
" relation of weights and, for steel and iron shapes 29	1
Bars, areas of flat steel	ก้
" hexagon, dimensions of	ຸດ
" half round " "	S
" Degree sings of	2
" Passaic, sizes of	2
" " weights and areas of268, 26	Z
Weights of hat steel	3
Bead iron, lithographs, weights and dimensions	I
Beams, calculation of, for concentrated loading102-10	6
" formulae for, loaded in various ways 107-11	0
" notes on strength and deflection of100-10	6
" relative strengths and deflections for, loaded in	
various ways11	1
" unsupported sideways	2
Beam, I, box girders, notes on	5
" " safe loads for	9
" " girders, notes on9	
Beams, <b>I</b> , areas of	
" " connection angles for	7
" connections of, to cast iron columns5	0
" " lithographs of	h
" maximum shears for	6
" method of increasing sectional areas of3	1
method of filereasing sectional areas of	I

## INDEX.

	Page
Beams, I, properties of	. <b>56–</b> 59
" rivet spacing for	48
" " safe loads for	74-81
" " safe loads for	72
" " separators for	44
" " sizes of required for floor joists and girders."	, 120-133
" " spacing of for uniform loads	. 120–133
" " used in foundations	.209-213
" " safe loads on	.212, 213
" " weights and dimensions of	
Rooms wooden safe loads on	216
Beams, wooden, safe loads on	217
" " yellow " " " " joists.	218
" " " ioists.	219, 220
Bearings and foundations, notes on	207-211
Bearings and foundations, notes of	51
Bearing plates for <b>I</b> beams Bending moment, formulae for various loadings	107_110
" method of calculation of	107-110
The method of calculation of	958
Bolts, area of, at root of thread	958
" screw threads for	956
" weights of round headed	957
	ດວດ ດວງ
Brass sheets, weights of	. 202, 203
" wire " "  Brick walls, weights of	04
Brick walls, weights of	
Brickwork, notes on	51
" safe loads on	091 090
Bridges, notes on highway and railway	060 061
Buckle plates	.200, 201
Building lawsCeilings, construction of fireproof	40
Ceilings, construction of fireproof	115
notes on	60.03
Channels, areas of	17 01
" lithographs of	11-21
" maximum shears for	94
method of mercasting sectional areas of	
" properties of	10.00-02
" rivet spacing for	00.05
saic loads for a contract of the said and th	02-00
unsupported side mays	140
WCD HOIZOHtat	
	30
Cisterns, capacity of	202 200
Circles, areas of	300, 309
" circumferences of	300, 307
Clevises, weights and dimensions of	
Coefficient of strength, explanation of	53–55
" " for Passaic shapes (see tables of p	roperties).
" " notes on	100, 101

## INDEX.

Lag	, -
Columns, areas of (see tables of safe loads for columns).	
" built sections of	2
" connection of I beams to cast iron	0
" details of construction4	3
" eccentric loading of	2
" formulae for safe strength of	19
" " ultimate strength of	9
" notes on	2
" properties of	6
" (see also tables, safe loads on columns).	
" safe loads for angle	4
" " cast iron	)5
" " channel and plate186-19	)5
" " " <b>I</b> beam	31
" " " latticed channel	
" " plate and angle	)2
" ultimate strength of cast iron	)6
" " steel	
" " wrought iron15	3
" weights of (see tables, safe loads on columns).	
" <b>Z</b> bar, dimensions of	13
" timber, safe loads on	9
Concentrated loading, method of calculation for 102-10	16
Connection angles for <b>I</b> beams and channels	17
Connections for I beams to cast iron columns	50
Constructional details	38
Copper sheets, weights of	33
	35
" wire, " " Corrugated iron, weights and dimensions of	50
Crippling loads for <b>I</b> beams and channels	27
Decimals of a foot for $\frac{1}{32}$ inch	17
" an inch for $\frac{1}{64}$ th	15
To desting an efficients, explanation of	73
Deflection coefficients, explanation of	נט
" limit for plastered ceilings	73
" limit for plastered ceilings	11
Deflections, comparison of, various methods of loading1	10
" formulae for " " " 107-1: Eccentric loading of columns	59
Eccentric loading of columns	6A
Eye bars, dimensions of Passaic	67
Expansion, lineal, of substances by heat	QA
of steel and iron	1
Explanatory notes on Passaic shapes	40
Fireproof construction, details of	19
" notes on	04
Fireproofing materials, weights of	99
Flagging, weights of	20
Flats, areas of	OU
" dimensions of Passaic	02

INDEX.	Dogo
Flats, dimensions of Passaic round edge	Page 21 20
" weights of steel	.271-273
" weights of steel  Floors, firepooof arches for, illustrations of	39, 40
" live loads for117,	118, 119
" notes on	.114-118
" safe loads for fireproof arch	
" weights of fireproof	216 217
Foundations, cantilever	211
" design of	.207-211
" I beam	.209-213
" safe loads on	207
Gauge, American wire	283
" Birmingham wire	284
Glass, floor and skylight	292
" window	290
" window Girders, explanation of tables of I beams used as	120
" I beam, notes on	94
" " box, notes on	06.00
" " " safe loads for	
" riveted, calculation of	134-138
" coefficients for	139
" " illustration of	41
" safe loads for	.140-143
Grillage, I beam, for foundations	209–211
Groove iron, lithograph of	212, 213
Hand rail " "	31
Half round bars, dimensions of	31, 32
Hexagon bars, dimensions of	$\dots 31, 32$
Inch decimals of an, for ath	315
Iron, notes on	000 002
" wire' " "	285
Joists, I beam, for floors, sizes required	120-133
" vellow-pine, maximum spans for	. 219, 220
Laws, comparison of building	119
Lintels, notes on design of	145
" safe loads for cast iron	
" " stone	293
Loads for bridges, highway and railway	231, 232
" floors	117–119
" roofs	224, 225
Loads, suddenly applied, calculation for	144
Mensuration, notes on	34
Michiga of increasing sectional areas	

INDEX.	
	Page
Metric conversion table	313
Miscellaneous shapes, lithographs of	100
" " of column sections (see properties of	columns)
" " of column sections (see properties of a " " Passaic shapes. (see properties of	f shanes)
" " rectangles	113
" " usual sections	112
Moment of resistance, notes on	.100, 101
Nails, weights and dimensions of	.288, 289
Nuts and bolt heads, weights of hexagon and square	257
" hexagon and square, dimensions of	258
Weights Of	965
" pin, weights and dimensions of	Δ
" " lithographs of	6-31
Picture frame iron, lithograph of	31
Piles, safe loads on	209
Pin nuts, weights and dimensions of	265
Pins, dimensions of standard	265
" notes on allowable strains for	251
" shearing and bearing values and maximum b	oso osa
moments	286
Plates, universal mill, sizes of Passaic	
" weights of steel	274-277
" weights of steel	221, 222
Properties of column sections	.155-166
" " Passaic shapes (see shape in c	question).
Durling white nine maximum spans for	01%
Purlins, white-pine, maximum spans for	218
Radius of gyration, notes on the	100, 148
" " of columns (see tables, properties of c	columns).
" " of columns (see tables, properties of c " " Passaic shapes (see tables, properties " " two angles, back to back	of shapes).
Reactions, method of calculating	102
Rectangles, moment of inertia of	113
Rivet holes, deduction of area for	256
" notes on allowable strains on	251
" shearing and bearing values of	254, 255
" weights of	256
" weights of	48, 49
Rods, with loop eyes, length required for one head .	263
Koots, notes on the design of	223-223
Roof trusses, strains in, tables oftypes of, illustrated	228-230
Pound edge flats dimensions of	21 20
Rounds, areas and weights of	268, 269

## INDEX. Page Safe loads, comparison of, various methods of loading....111 " " " " formulae for, 107-110 66 66 for columns ..... (see columns, safe loads). Passaic shapes..... (see shape in question). 66 Section modulus, explanation and use of ....... 53-55, 106 of column sections. (see properties of columns). 66 " Passaic shapes.... (see properties of shapes). Sheets of iron, steel, copper and brass, weights of....282, 283 wire. " roof " miscellaneous materials .......... 297 " stone, brick and cement...........298 66

INDEX.	
	Page
Trusses, bridge, notes on231-	-233
" strains in	-243
types of the transfer of the t	.234
" roof, notes on	-225
" " strains in	-230 997 ·
Tubes, boiler, weights and dimensions of	287
" extra heavy, dimensions of	.287
Turntables, Passaic standard railroad244	245
Upsets for round and square rods	.262
Washers, weights and dimensions of	.259
Weights and areas, relation of, for steel and iron shapes.	.294
Weights and measures	-313
Weights of brick walls	94
" column sections (see tables of safe loads for column	
" " fireproof floors" " fireproofing materials	304
" " materials	-302
" " merchandise	.303
" Passaic shapes (see shape in question	on).
" roof coverings	224
" sheets of iron, steel, copper and brass282	2, 283
" " wire, iron, steel, copper and brass	. 285
Wind bracing for buildings	, 215
" pressure on roofs	. 225
Wire gauges, different standards in use	204
Wire, weights of iron, steel, copper and brass Wooden beams, safe loads for	216
" maximum spans for	7-220
" columns, safe loads on	, 222
Z bars, areas of	0, 71
" lithographs of	29, 30
" method of increasing sectional area of	34
" properties of	0, 71
" safe loads for	93
" weights of	71
Z bar columns(see columns	ins).
dimensions of	5. 166
" " properties of	), 202
Sale loads for	, 202







Edwidsrandvinkle Zo Otis Elevator Company 71 Buray New York.





100001

N.J.

.P2.6,

